Paper:

# Integrated Ground Motion and Tsunami Simulation for the 1944 Tonankai Earthquake Using High-Performance Supercomputers

## Takashi Furumura and Tatsuhiko Saito

Center for Integrated Disaster Information Research, Interfaculty Graduate School of Interdisciplinary Information Studies, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

*J. Disaster Res.*, Vol.4 No.2, pp. 118-126, 2009.

- [1] T. Ohmachi, H. Tsukiyama, and H. Matsumoto, “Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting,”Bull. Seism. Soc. Am., 91, pp. 1898-1909, 2001.
- [2] T. Furumura, B. L. N. Kennettm and K. Koketsu, “Visualization of 3-D wave propagation from the 2000 Tottori-ken Seibu, Japan earthquake: Observation and numerical simulation,” Bull. Seism. Soc. Am., 91, pp. 667-682, 2003.
- [3] R. W. Graves, “Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences,” Bull. Seism. Soc. Am., 86, pp. 1091-1106, 1996.
- [4] C. Cerjan, D. Kosloff, R. Kosloff, and M. Reshef, “A nonreflecting boundary condition for discrete acoustic and elastic wave equations,” Geophysics, 50, pp. 705-708, 1985.
- [5] T. Furumura and L. Chen, “Large scale parallel simulation and visualization of 3D seismic wavefield using the Earth Simulator,” Computer Modeling and Engineering Sciences, 6, pp. 143-168, 2004.
- [6] Y. Tanaka, H. Miyake, K. Koketsu, T. Furumura, T. Hayakawa, T. Baba, T, H. Suzuki, and T. Masuda, “The DaiDaiToku integrated model of the velocity structure beneath the Tokyo metropolitan area (2),” Abst., Japan Geoscience Union Meet. 2006, S116-P014, 2006.
- [7] T. Baba, A. Ito, Y. Kaneda, T. Hayakawa, and T. Furumura, “3D velocity structure model in the ocean around Japan inferred from controlled source seismic experiments,” Abst., Japan Geoscience Union Meet. 2006.
- [8] T. Furumura, T. Hayakawa, M. Nakamura, K. Koketsu, and T. Baba, “Development of long-period ground motions from the Nankai Trough, Japan, earthquakes: Observations and computer simulation of the 1944 Tonankai (Mw8.1) and the 2004 SE Off-Kii Peninsula (Mw7) Earthquakes,” Pure Appl. Geophys., 165, pp. 585-607, 2008.
- [9] Y. Yamanaka, “Source process of the 1944 Tonankai and the 1945 Mikawa earthquake,” Chikyu Monthly, 305, pp. 739-745, 2004.
- [10] T. Furumura and M. Nakamura, “Recovering of strong motion record of the 1944 Tonankai earthquake and long period ground motion in Kanto region,” Geophysical Exploration, 59, pp. 337-351, in Japanese, 2006.
- [11] C. W. Hirt, B. D. Nichols, and N. C. Romero, “SOLA - A numerical solution algorithm for transient fluid flows,” Los Alamos National Laboratory report LA-5852, 1975.
- [12] T. Saito and T. Furumura, “Three-dimensional simulation of tsunami generation and propagation: application to intraplate events,” J. Geophys. Res., doi:10.1029/2007JB005523, 2009.
- [13] K. Kajiura, “The leading wave of a tsunami,” Bulletin of the Earthquake Research Institute, 41, pp. 545-571, 1963.
- [14] Y. Shigihara and K. Fujima, “Wave dispersion effect in the Indian Ocean tsunami,” Journal of Disaster Research, 1, 142 - 147, 2006.
- [15] T. Saito and T. Furumura, “Scattering of linear long-wave tsunamis due to randomly fluctuating sea-bottom topography: coda excitation and scattering attenuation,” Geophys. J. Int., 2008, in press.
- [16] Y. Okada, “Surface deformation due to shear and tensile faults in a half space,” Bull. Seismol. Soc. Am., 75, pp. 1135-1154, 1985.
- [17] F. Imamura, Y. Izutani, and N. Shuto, “Accuracy of tsunami numerical forecasting with the rapid estimation method of fault parameters – A case of two fault planes with different stress drop of the 1944 Tonankai earthquake,” Zisin 2, 44, 211-219, 1991.

This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.