JDR Vol.4 No.2 pp. 72-82
doi: 10.20965/jdr.2009.p0072


Continuous Long-Term Seafloor Pressure Observation for Detecting Slow-Slip Interplate Events in Miyagi-Oki on the Landward Japan Trench Slope

Ryota Hino, Shiori Ii, Takeshi Iinuma, and Hiromi Fujimoto

Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan

January 5, 2009
March 15, 2009
April 1, 2009
seafloor geodesy, pressure monitoring, interplate episodic slow-slip, megathrust earthquakes
In starting continuous seafloor pressure observation in the Miyagi Oki region, where a M 7.5 interplate earthquake is expected within the next three decades, we distributed pressure stations to enable us to determine slow-slip event size and location along the top of the subducting Pacific Plate as precisely as possible. Numerical simulation indicated that ∼ 2 cm uplift is expected above a thrust faulting event of Mw=6.8 at a depth of ∼ 40 km. Combining continuous onshore global positioning system (GPS) time series and seafloor pressure observation is expected to significantly improve spatial resolution of interplate slip distribution over inversion results using only GPS data alone. Pressure change due to the predicted amount of seafloor movement is comparable to or slightly less than that caused by dynamic ocean processes. Seafloor pressure data from long-term continuous observation using the spatially dense array provided by our study is invaluable for understanding spatiotemporal patterns in seafloor pressure variations caused by two different origins – the lithosphere and the hydro-atmosphere.
Cite this article as:
R. Hino, S. Ii, T. Iinuma, and H. Fujimoto, “Continuous Long-Term Seafloor Pressure Observation for Detecting Slow-Slip Interplate Events in Miyagi-Oki on the Landward Japan Trench Slope,” J. Disaster Res., Vol.4 No.2, pp. 72-82, 2009.
Data files:
  1. [1] M. Ando, “Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough,” Tectonophysics, 27, pp. 119-140, 1975.
  2. [2] T. Baba, K. Hirata, T. Hori, and H. Sakaguchi, “Offshore geodetic data conductive to the estimation of the afterslip distribution following the 2003 Tokachi-oki earthquake,” Earth Planet. Science Lett., 241, pp. 281-292, 2006.
  3. [3] J. Boatwright and M. Cocco, “Frictional constraints on crustal faulting,” J. Geophys. Res., 101, pp. 13895-13909, 1996.
  4. [4] W. W. Chadwick Jr., S. L. Nooner, M. A. Zumberge, R. W. Embley, and C. G. Fox, “Vertical deformation monitoring at Axial Seamount since its 1998 eruption using deep-sea pressure sensors,” J. Volc. Geotherm. Res., 150, pp. 313-327, 2006.
  5. [5] M. Cisternas, B. F. Atwater, F. Torrej’on, Y. Sawai, G. Mauchuca, M. Lagos, A. Eipert, C. Youlton, I. Salgado, T. Kamataki, M. Shishikura, C. P. Rajendran, J. K. Malik, Y. Rizal, and M. Husni, “Predecessors of the giant Chile earthquake,” Nature, 437, pp. 404-407, doi:10.1038/nature03943, 2005.
  6. [6] C. G. Fox, W. W. Chadwick Jr., and R. W. Embley, “Direct observation of a submarine volcanic eruption from a sea-floor instrument caught in a lava flow,” Nature, 412, pp. 727-729, 2001.
  7. [7] H. Fujimoto, M. Mochizuki, K. Mitsuzawa, T. Tamaki, and T. Sato, “Ocean bottom pressure variations in the southern Pacific following the 1997-98 El Ni no event,” Geophys. Res. Lett., 30, 1456, 10.1029/2002GL016677, 2003.
  8. [8] M. Fujita, T. Ishikawa, M. Mochizuki, M. Sato, S. Toyama, M. Katayama, K. Kawai, Y. Matsumoto, T. Yabuki, A. Asada, and O. I. Colombo, “GPS/Acoustic seafloor geodetic observation method of data analysis and its application,” Earth Planets Space, 58, pp. 265-275, 2006.
  9. [9] K. Gagnon, C. D. Chadwell, and E. Norabuena, “Measuring the onset of locking in the Peru-Chile trench with GPS and acoustic measurements,” Nature, 434, pp. 205-208, 2005.
  10. [10] Headquarters for Earthquake Research Promotion of Japan, “Long-term evaluation of the Miyagi-Oki earthquakes,” ,
    2003 (in Japanese).
  11. [11] K. Heki, S. Miyazaki, and H. Tsuji, “Silent fault slip following an interplate thrust earthquake at the Japan trench,” Nature, 386, pp. 595-598, 1997.
  12. [12] R. Hino, Y. Yananoto, M. Nishino, T. Kanazawa, T. Yamada, K. Nakahigashi, K. Mochizuki, M. Shinohara, G. Aoki, M. Tanaka, E. Araki, S. Kodaira, G. Fujie, and Y. Kaneda, “Hypocenter distribution of the 2005 Miyagi-Oki earthquake and its aftershocks by OBS observation,” Abstr. SSJ 2005 Fall Meeting, PM02, 2005.
  13. [13] R. D. Hyndman, K. Wang, and M. Yamano, “Thermal constraints on the seismogenic portion of the southerwestern Japan subduction thrust,” J. Geophys. Res., 100, pp. 15,373-15,392, 1995.
  14. [14] T. Igarashi, T. Matsuzawa, and A. Hasegawa, “Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone,” J. Geophys. Res., 108, doi:10.1029/2002JB001920, 2003.
  15. [15] T. Iinuma, S. Miura, S. Yui, N. Uchida, T. Sato, K. Tachibana, and A. Hasegawa, “Spatio-temporal evolution of post-seismic slip associated with the 2005 Miyagi-oki earthquake (M7.2) as inferred from GPS data,” Eos Trans. AGU, 87 (52), Fall Meet. Suppl. Abstract G33A-0032, 2006.
  16. [16] N. Kato, “Interaction of slip events at a circular asperity: Numerical simulation of seismic cycles on a two-dimensional planar fault with nonuniform frictional property,” J. Geophys. Res., 109, B12306, doi.10.1029/2004JB003001, 2004.
  17. [17] N. Kato, “Numerical simulation of recurrence of asperity rupture in the Sanriku region, northeastern Japan,” J. Geophys. Res., 113, B06302, doi:10.1029/2007JB005515, 2008.
  18. [18] M. Kido, H. Fujimoto, S. Miura, Y. Osada, K. Tsuka, and T. Tabei, “Seafloor displacement at Kumano-nada caused by the 2004 off Kii Peninsua earthquakes, deduced through repeated GPS/Acoustic surveys,” Earth Planets Space, 58, pp. 911-915, 2006.
  19. [19] S. Kodaira, T. Hori, A. Ito, S. Miura, G. Fujie, J.-O. Park, T. Baba, H. Sakaguchi, and Y. Kaneda, “A cause of rupture segmentation and synchronization in the Nankai trough revealed by seismic imaging and numerical simulation,” J. Geophys. Res., 111, B09301, doi:10.1029/2005JB004030, 2006.
  20. [20] T. Lay, H. Kanamori, C. J. Ammon, M. Nettles, S. N. Ward, R. C. Aster, S. L. Beck, S. L. Bilek, M. R. Brudzinski, R. Butler, H. R. Deshon, G. Ekstrom, K. Satake, and S. Sipkin, “The great Sumatra-Andaman earthquake of 26 December 2005,” Science, 308, pp. 1127-1133, doi:10.1126/Science.1112250, 2005.
  21. [21] C. J. Marone, C. H. Scholtz, and R. Bilham, “On the mechanics of earthquake afterslip,” J. Geophys. Res., 96, pp. 8441-8452, 1991.
  22. [22] T. Matsuzawa, N. Uchida, T. Igarashi, T. Okada, and A. Hasegawa, “Repeating earthquakes and quasi-static slip on the plate boundary east of northern Honshu, Japan,” Earth Planet Space, 56, pp. 803-811, 2004.
  23. [23] Y. Matsumoto, M. Fujita, T. Ishikawa, M. Mochizuki, T. Yabuki, and A. Asada, “Undersea co-seismic crustal movements associated with the 2005 Off Miyagi Prefecture Earthquake detected by GPS/acoustic seafloor geodetic observation,” Earth Planets Space, 58, pp. 1573-1576, 2006.
  24. [24] S. Miura, T. Iinuma, S. Yui, N. Uchida, T. Sato, K. Tachibana, and A. Hasegawa, “Co- and post-seismic slip associated with the 2005 Miaygi-oki earthquake (M7.2) as inferred from GPS data,” Earth Planets Space, 58, pp. 1567-1572, 2006.
  25. [25] M. Murakami, H. Suito, S. Ozawa, and M. Kaidzu, “Earthquake triggering bymigrating slow slip initiated by M8 earthquake along Kuril Trench, Japan,” Geophys. Res., Lett., 33, L09306, doi:10.1029/2006GL025967, 2006.
  26. [26] T. Nishimura, T. Hirasawa, S. Miyazaki, T. Sagiya, T. Tada, S. Miura, and K. Tanaka, “Temporal change of interplate coupling in northeastern Japan during 1995-2002 estimated from continuous GPS observations,” Geophys. J. Int., 157, doi:10.1111/j.1365-246X.2004.02159.x, 2004.
  27. [27] K. Obara, H. Hirose, F. Yamamizu, and K. Kasahara, “Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone,” Geophys. Res. Lett., 31, L23602, 10.1029/2004GL020848, 2004.
  28. [28] T. Okada, T. Yaginuma, N. Umino, T. Kono, T. Matsuzawa, S. Kita, and A. Hasegawa, “The 2005 M7.2 MIYAGI-OKI earthquake, NE Japan: Possible rerupturing of one of asperities that caused the previous M7.4 earthquake,” Geophys. Res. Lett., 32, L24302, doi:10.1024/2005GL024613, 2005.
  29. [29] J.-H. Park, D. R. Watts, K. A. Donohue, and S. R. Jayne, “A comparison of in situ bottom pressure array measurements with GRACE estimates in the Kuroshio Extension,” Geophys. Res. Lett., 35, L17601, doi:10.1029/2008GL034778, 2008.
  30. [30] K. A. Phillips, C. D. Chadwell, and J. A. Hildebrand, “Vertical deformation measurements on the submerged south flank of Kilauea volcano, Hawai’i reveal seafloor motion associated with volcanic collapse,” J. Geophys. Res., 113, B05106, doi:10.1029/2007JB005124, 2008.
  31. [31] Y. Sawai, K. Satake, T. Kamataki, H. Nasu, M. Shishikura, B. F. Atwater, B. P. Horton, H. M. Kelsey, T. Nagumo, and M. Yamaguchi, “Transient uplift after a 17th-century along the Kuril Subduction Zone,” Science, 306, pp. 1918-1920, 2004.
  32. [32] T. Tamaki, R. Hino, H. Fujimoto, T. Yamada, T. Kanazawa, and H. Murakami, “Vertical crustal movement on the seafloor detected with differential pressure monitoring,” abstract UT2002, IEEE-OES, Tokyo, 2002.
  33. [33] Y. Tamura, T. Sato, M. Ooe, and M. Ishiguro, “A procedure for tidal analysis with a baysian information criterion,” Geophys. J. Int., 104, pp. 507-516, 1991.
  34. [34] N. Uchida, T. Matsuzawa, and A. Hasegawa, “Interplate quasi-static slip off Sanriku, NE Japan, estimated from repeating earthquakes,” Geophys. Res. Lett., 30, 1801, doi:10.1029/2003GL017452, 2003.
  35. [35] N. Uchida, T. Matsuzawa, A. Hasegawa, M. Ichiyanagi, and M. Kasahara, “Quasi-static slips before and after the 2003 Tokachi-oki and November 29, 2004 off-Kushiro earthquakes at SE off Hokkaido, Japan estimated from repeating earthquakes,” Abstr. AOGS 2005, 58-SE-A1415, 2005.
  36. [36] N. Uchida, T. Matsuzawa, T. Miura, S. Hirahara, and A. Hasegawa, “Interplate quasi-static slip off Miyagi and Fukushima prefecture estimated from small repeating earthquake data,” Zisin 2, 59, pp. 287-295, 2007 (in Japanese with English abstract).
  37. [37] N. Umino, T. Kono, T. Okada, J. Nakajima, T. Matsuzawa, N. Uchida, A. Hasegawa, Y. Tamura, and G. Aoki, “Revisiting the three M∼7 Miyagi-oki earthquakes in the 1930s: possible seismogenic slip on asperities that re-ruptured during the 1978 M=7.4 Miyagi-oki earthquake,” Earth Planets Space, 58, pp. 1587-1592, 2006.
  38. [38] R. B. Wearn and N. G. Larson, “Measurements of the sensitivities and drift of Digiquartz pressure sensors,” Deep-Sea Res., 29, pp. 111-134, 1982.
  39. [39] C. Wu, K. Koketsu, and H. Miyake, “Source processes of the 1978 and 2005 Miyagi-oki, Japan, earthquakes: Repeated rupture of asperities over successive large earthquakes,” J. Geophys. Res., 113, B08316, doi:10.1029/2007JB005189, 2008.
  40. [40] T. Yabuki and M. Matu’ura, “Geodetic data inversion using a Baysian information criterion for spatial distribution of fault slip,” Geophys. J. Int., 109, pp. 363-375, 1992.
  41. [41] Y. Yagi and M. Kikuchi, “Partioning between seismogenic and aseismic slip as highlighted from slow slip events in Hyuga-nada, Japan,” Geophys. Res. Lett., 30, 1087,
    doi:10.1029/2002GL015664, 2003.
  42. [42] Y. Yagi, M. Kikuchi, and T. Nishimura, “Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-Haruka-oki, Japan earthquake,” Geophys. Res. Lett., 30, 2177, doi:10.1029/2003GL018189, 2003.
  43. [43] Y. Yamanaka, EIC Seismological note, 141, 2003.
  44. [44] Y. Yamanaka and M. Kikuchi, “Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data,” J. Geophys. Res., 109, B07307, doi:10/1029/2003JB002683, 2004.
  45. [45] Y. Yamamoto, R. Hino, K. Suzuki, Y. Ito, T. Yamada, M. Shinohara, T. Kanazawa, G. Aoki, M. Tanaka, K. Uehira, G. Fujie, Y. Kaneda, T. Takanami, and T. Sato, “Spatial heterogeneity of the mantle wedge structure and interplate coupling in the NE Japan forearc region,” Geophys. Res. Lett., 35, L23304, doi:10.1029/2008GL036100, 2008.
  46. [46] S. Yoshida and N. Kato, “Episodic aseismic slip in a two-degree-of-freedom block-spring model,” Geophys. Res. Lett., 30, 1681, doi:10.1029/2003GL017439, 2003.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024