single-jc.php

JACIII Vol.28 No.2 pp. 333-351
doi: 10.20965/jaciii.2024.p0333
(2024)

Research Paper:

# Parameter-Free Interval Priority Weight Estimation Methods Based on Minimum Conceivable Ranges Under a Crisp Pairwise Comparison Matrix

## Shigeaki Innan and Masahiro Inuiguchi

Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

August 2, 2023
Accepted:
October 27, 2023
Published:
March 20, 2024
Keywords:
analytic hierarchy process, interval priority weight, vague evaluation, linear programming
Abstract

Methods for interval priority weight estimation from a crisp pairwise comparison matrix were proposed in the interval analytic hierarchy process assuming the vagueness of human evaluation. The interval priority weights estimated by the conventional method do not reflect the intrinsic vagueness in the given pairwise comparison matrix (PCM). This paper proposes parameter-free methods based on minimal conceivable ranges for estimating interval priority weights from a crisp pairwise comparison matrix. The estimated interval priority weight vectors are required to satisfy (1) the potential reproducibility, (2) the normality, and (3) the preservation of the perfect consistent data. Estimation methods of interval priority weights are proposed based on the minimum possible range. We show those proposed methods satisfy the required three properties. The estimation problem of interval priority weights potentially has multiple solutions with which the associated interval PCMs are identical to one another. To make the further investigation simpler, we use an interval priority weight vector among multiple solutions such that the sum of the center values of interval priority weights is one. We compare the estimation methods of interval priority weights from the viewpoint of estimation accuracy by numerical experiments. Namely, by generating crisp pairwise comparison matrices randomly under true interval PCMs, we evaluate the accuracies of the estimated interval priority weight vectors by comparing the true interval priority weight vectors.

Estimation accuracy scores of various methods

S. Innan and M. Inuiguchi, “Parameter-Free Interval Priority Weight Estimation Methods Based on Minimum Conceivable Ranges Under a Crisp Pairwise Comparison Matrix,” J. Adv. Comput. Intell. Intell. Inform., Vol.28 No.2, pp. 333-351, 2024.
Data files:
References
1. [1] S. Greco, M. Ehrgott, and J. Figueira (Eds.), “Multiple Criteria Decision Analysis: State of the Art Surveys, Second Edition,” Springer, New York, 2016.
2. [2] S. Corrente, S. Greco, M. Kadziński, and R. Słowiński, “Robust Ordinal Regression in Preference Learning and Ranking,” Machine Learning, Vol.93, No.2, pp. 381-422, 2013. https://doi.org/10.1007/s10994-013-5365-4
3. [3] S. A. Arcidiacono, S. Corrente, and S. Greco, “As Simple as Possible but not Simpler in Multiple Criteria Decision Aiding: The Robust-stochastic Level Dependent Choquet Integral Approach,” European J. of Operational Research, Vol.280, pp. 988-1007, 2020. https://doi.org/10.1016/j.ejor.2019.07.065
4. [4] Z. Ru, J. Liu, M. Kadziński, and X. Liao, “Probabilistic Ordinal Regression Methods for Multiple Criteria Sorting Admitting Certain and Uncertain Preferences,” European J. of Operational Research, Vol.311, pp. 596-616, 2023. https://doi.org/10.1016/j.ejor.2023.05.007
5. [5] T. L. Saaty, “The Analytic Hierarchy Process,” McGraw-Hill, New York, 1980.
6. [6] T. L. Saaty and C. G. Vargas, “Comparison of Eigenvalue, Logarithmic Least Squares and Least Squares Methods in Estimating Ratios,” Mathematical Modelling, Vol.5, pp. 309-324, 1984. https://doi.org/10.1016/0270-0255(84)90008-3
7. [7] A. Arbel, “Approximate Articulation of Preference and Priority Derivation,” European J. of Operational Research, Vol.43, pp. 317-326, 1989. https://doi.org/10.1016/0377-2217(89)90231-2
8. [8] A. Arbel and L. G. Vargas, “Preference Simulation and Preference Programming: Robustness Issues in Priority Derivation,” European J. of Operational Research, Vol.69, pp. 200-209, 1993. https://doi.org/10.1016/0377-2217(93)90164-I
9. [9] A. A. Salo, “Inconsistency Analysis by Approximately Specified Priorities,” Mathematical and Computer Modelling, Vol.17, Nos.4-5, pp. 123-133, 1993. https://doi.org/10.1016/0895-7177(93)90181-W
10. [10] A. Arbel and L. G. Vargas, “Interval Judgements and Euclidean Centers,” Mathematical and Computer Modelling, Vol.46, Nos.7-8, pp. 976-984, 2007.
11. [11] M. Kress, “Approximate Articulation of Preference and Priority Deviation: A Comment,” European J. of Operational Research, Vol.52, pp. 382-383, 1991. https://doi.org/10.1016/0377-2217(91)90174-T
12. [12] R. Islam, M. P. Biswal, and S. S. Alam, “Preference Programming and Inconsistent Interval Judgements,” European J. of Operational Research, Vol.97, pp. 53-62, 1997. https://doi.org/10.1016/S0377-2217(95)00377-0
13. [13] A. Salo and A. Punkka, “Rank Inclusion in Criteria Hierarchies,” European J. of Operational Research, Vol.163, pp. 338-356, 2005. https://doi.org/10.1016/j.ejor.2003.10.014
14. [14] S. Siraj, L. Mikhailov, and J. A. Keane, “Enumerating All Spanning Trees for Pairwise Comparisons,” Computers & Operations Research, Vol.39, No.2, pp. 191-199, 2012. https://doi.org/10.1016/j.cor.2011.03.010
15. [15] M. Lundy, S. Siraj, and S. Greco, “The Mathematical Equivalence of the “Spanning Tree” and Row Geometric Mean Preference Vectors and Its Implications for Preference Analysis,” European J. of Operational Research, Vol.257, pp. 197-208, 2017. https://doi.org/10.1016/j.ejor.2016.07.042
16. [16] J. Mazurek and K. Kułakowski, “On the Derivation of Weights from Incomplete Pairwise Comparisons Matrices via Spanning Trees with Crisp and Fuzzy Confidence Levels,” Int. J. of Approximate Reasoning, Vol.150, pp. 247-257, 2022. https://doi.org/10.1016/j.ijar.2022.08.014
17. [17] K. Sugihara and H. Tanaka, “Interval Evaluations in the Analytic Hierarchy Process by Possibilistic Analysis,” Computational Intelligence, Vol.17, pp. 567-579, 2001. https://doi.org/10.1111/0824-7935.00163
18. [18] K. Sugihara, H. Ishii, and H. Tanaka, “Interval Priorities in AHP by Interval Regression Analysis,” European J. of Operational Research, Vol.158, No.3, pp. 745-754, 2004. https://doi.org/10.1016/S0377-2217(03)00418-1
19. [19] Y.-M. Wang and T. M. S. Elhag, “A Goal Programming Method for Obtaining Interval Weights from an Interval Comparison Matrix,” European J. of Operational Research, Vol.177, pp. 458-471, 2007. https://doi.org/10.1016/j.ejor.2005.10.066
20. [20] L. Mikhailov, “A Fuzzy Approach to Deriving Priorities from Interval Pairwise Comparison Judgments,” European J. of Operational Research, Vol.159, pp. 687-704, 2004. https://doi.org/10.1016/S0377-2217(03)00432-6
21. [21] T. Entani and K. Sugihara, “Uncertainty index based interval assignment by Interval AHP,” European J. of Operational Research, Vol.219, pp. 379-385, 2012. https://doi.org/10.1016/j.ejor.2012.01.010
22. [22] T. Entani and M. Inuiguchi, “Pairwise Comparison Based Interval Analysis for Group Decision Aiding with Multiple Criteria,” Fuzzy Sets and Systems, Vol.274, pp. 79-96, 2015. https://doi.org/10.1016/j.fss.2015.03.001
23. [23] K. W. Li, Z.-J. Wang, and X. Tong, “Acceptability Analysis and Priority Weight Elicitation for Interval Multiplicative Comparison Matrices,” European J. of Operational Research, Vol.250, pp. 628-638, 2016. https://doi.org/10.1016/j.ejor.2015.09.010
24. [24] B. Cavallo and M. Brunelli, “A General Unified Framework for Interval Pairwise Comparison Matrices,” Int. J. of Approximate Reasoning, Vol.93, pp. 178-198, 2018. https://doi.org/10.1016/j.ijar.2017.11.002
25. [25] T. Kuo, “Interval Multiplicative Pairwise Comparison Matrix: Consistency, Indeterminacy and Normality,” Information Sciences, Vol.517, pp. 244-253, 2020. https://doi.org/10.1016/j.ins.2019.12.066
26. [26] P. Grošelj and G. Dolinar, “Group AHP Framework Based on Geometric Standard Deviation and Interval Group Pairwise Comparisons,” Information Sciences, Vol.626, pp. 370-389, 2023. https://doi.org/10.1016/j.ins.2023.01.034
27. [27] P. J. M. van Laarhoven and W. Pedrycz, “A Fuzzy Extension of Saaty’s Priority Theory,” Fuzzy Sets and Systems, Vol.11, pp. 229-241, 1983. https://doi.org/10.1016/S0165-0114(83)80082-7
28. [28] J. J. Buckley, “Fuzzy Hierarchical Analysis,” Fuzzy Sets and Systems, Vol.17, pp. 233-247, 1985. https://doi.org/10.1016/0165-0114(85)90090-9
29. [29] J. J. Buckley, T. Feuring, and Y. Hayashi, “Fuzzy Hierarchical Analysis Revisited,” European J. of Operational Research, Vol.129, pp. 48-64, 2001. https://doi.org/10.1016/S0377-2217(99)00405-1
30. [30] R. Csutora and J. J. Buckley, “Fuzzy Hierarchical Analysis: The Lambda-max Method,” Fuzzy Sets and Systems, Vol.120, pp. 181-195, 2001. https://doi.org/10.1016/S0165-0114(99)00155-4
31. [31] Y.-M. Wang, T. M. S. Elhag, and Z. Hua, “A Modified Fuzzy Logarithmic Least Squares Method for Fuzzy Analytic Hierarchy Process,” Fuzzy Sets and Systems, Vol.157, pp. 3055-3071, 2006. https://doi.org/10.1016/j.fss.2006.08.010
32. [32] J. Ramík and R. Perzina, “A Method for Solving Fuzzy Multicriteria Decision Problems with Dependent Criteria,” Fuzzy Optimization and Decision Making, Vol.9, No.2, pp. 123-141, 2010. https://doi.org/10.1007/s10700-010-9078-x
33. [33] L. Mikhailov and P. Tsvetinov, “Evaluation of Services Using a Fuzzy Analytic Hierarchy Process,” Applied Soft Computing, Vol.5, pp. 23-33, 2004. https://doi.org/10.1016/j.asoc.2004.04.001
34. [34] E. Dopazo, S. C. K. Lui, and J. Guisse, “A Parametric Model for Determining Consensus Priority Vectors from Fuzzy Comparison Matrices,” Fuzzy Sets and Systems, Vol.246, pp. 49-61, 2014. https://doi.org/10.1016/j.fss.2013.07.022
35. [35] Z. Zhang and W. Pedrycz, “Analysis of Acceptably Multiplicative Consistency and Consensus for Incomplete Interval-Valued Intuitionistic Fuzzy Preference Relations,” IEEE Trans. on Fuzzy Systems, Vol.30, No.2, pp. 486-499, 2022. https://doi.org/10.1109/TFUZZ.2020.3041164
36. [36] J. Ramík, “Deriving Priority Vector from Pairwise Comparisons Matrix with Fuzzy Elements by Solving Optimization Problem,” OPSEARCH, Vol.60, pp. 1045-1062, 2023. https://doi.org/10.1007/s12597-023-00641-4
37. [37] S. Innan and M. Inuiguchi, “Improvement of Interval Weight Estimation in Interval AHP,” Proc. of 2016 Joint 8th Int. Conf. on Soft Computing and Intelligent Systems and 2016 17th Int. Symposium on Advanced Intelligent Systems (SCIS&ISIS 2016), pp. 552-557, 2016. https://doi.org/10.1109/SCIS-ISIS.2016.0121
38. [38] M. Inuiguchi and S. Innan, “Non-Parametric Interval Weight Estimation Methods from a Crisp Pairwise Comparison Matrix,” Proc. of Joint 17th World Congress of Int. Fuzzy Systems Association and 9th Int. Conf. on Soft Computing and Intelligent Systems, 2017. https://doi.org/10.1109/IFSA-SCIS.2017.8023261
39. [39] M. Inuiguchi and S. Innan, “Improving Interval Weight Estimations in Interval AHP by Relaxations,” J. Adv. Comput. Intell. Intell. Inform., Vol.21, No.7, pp. 1135-1143, 2017. https://doi.org/10.20965/jaciii.2017.p1135
40. [40] M. Yamaguchi and M. Inuiguchi, “Estimation Methods of Interval Weights Centered at Geometric Mean from a Pairwise Comparison Matrix,” Proc. of 2018 Joint 10th Int. Conf. on Soft Computing and Intelligent Systems and 19th Int. Symposium on Advanced Intelligent Systems (SCIS&ISIS 2018), pp. 1382-1387, 2018. https://doi.org/10.1109/SCIS-ISIS.2018.00215
41. [41] M. Inuiguchi and I. Torisu, “The Advantage of Interval Weight Estimation over the Conventional Weight Estimation in AHP in Ranking Alternatives,” Proc. of Integrated Uncertainty in Knowledge Modelling and Decision Making: 8th Int. Symposium (IUKM 2020), LNCS, Vol.12482, pp. 38-39, 2020. https://doi.org/10.1007/978-3-030-62509-2_4
42. [42] M. Inuiguchi, A. Hayashi, and S. Innan, “Comparing the Ranking Accuracies among Interval Weight Estimation Methods at the Standard, Minimum and Maximum Solutions under Crisp Pairwise Comparison Matrices,” Proc. of 2022 Joint 12th Int. Conf. on Soft Computing and Intelligent Systems and 23rd Int. Symposium on Advanced Intelligent Systems (SCIS&ISIS 2022), 2022. https://doi.org/10.1109/SCISISIS55246.2022.10002032
43. [43] Y. Kato, “Reikai AHP: Kiso to Oyo (Analysis of AHP: Foundation and Applications),” Minerva Shobo, Kyoto, 2013 (in Japanese).
44. [44] H. Tanaka, K. Sugihara, and Y. Maeda, “Non-Additive Measures by Interval Probability Functions,” Information Sciences, Vol.164, pp. 209-227, 2004. https://doi.org/10.1016/j.ins.2003.06.001
45. [45] M. Inuiguchi, “Non-Uniqueness of Interval Weight Vector to Consistent Interval Pairwise Comparison Matrix and Logarithmic Estimation Methods,” Proc. of Integrated Uncertainty in Knowledge Modelling and Decision Makin (IUKM 2016), LNCS, Vol.9978, pp. 39-50, 2016. https://doi.org/10.1007/978-3-319-49046-5_4

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Aug. 05, 2024