single-jc.php

JACIII Vol.28 No.1 pp. 49-58
doi: 10.20965/jaciii.2024.p0049
(2024)

Research Paper:

Fuzzy Logic-Controlled Gripper Force Feedback for Haptic Device

Athena Rosz Ann R. Pascua*,†, Dino Dominic F. Ligutan* ORCID Icon, Marielet A. Guillermo** ORCID Icon, Arvin H. Fernando*** ORCID Icon, Edwin Sybingco* ORCID Icon, Argel A. Bandala* ORCID Icon, Ryan Rhay P. Vicerra** ORCID Icon, and Elmer P. Dadios** ORCID Icon

*Department of Electronics and Computer Engineering, De La Salle University
2401 Taft Avenue, Manila 1004, Philippines

Corresponding author

**Department of Manufacturing Engineering and Management, De La Salle University
2401 Taft Avenue, Manila 1004, Philippines

***Department of Mechanical Engineering, De La Salle University
2401 Taft Avenue, Manila 1004, Philippines

Received:
April 14, 2023
Accepted:
July 25, 2023
Published:
January 20, 2024
Keywords:
fuzzy logic controller, force-sensitive resistor, gripper, haptic device, SOFA
Abstract

This paper aims to solve the nonlinearity in PID control of a force-sensitive resistor on a haptic device and gripper using a fuzzy logic controller. The proposed system will match the force exerted by the haptic device to those applied at the gripper, and will be simulated using simulation open framework architecture.

Cite this article as:
A. Pascua, D. Ligutan, M. Guillermo, A. Fernando, E. Sybingco, A. Bandala, R. Vicerra, and E. Dadios, “Fuzzy Logic-Controlled Gripper Force Feedback for Haptic Device,” J. Adv. Comput. Intell. Intell. Inform., Vol.28 No.1, pp. 49-58, 2024.
Data files:
References
  1. [1] T. Endo et al., “Five-fingered haptic interface robot: HIRO III,” IEEE Trans. Haptics, Vol.4, No.1, pp. 14-27, 2011. https://doi.org/10.1109/TOH.2010.62
  2. [2] V. P. Da Fonseca, D. J. Kucherhan, T. E. A. De Oliveira, D. Zhi, and E. M. Petriu, “Fuzzy controlled object manipulation using a three-fingered robotic hand,” Proc. of 11th Annu. IEEE Int. Syst. Conf. (SysCon 2017), 2017. https://doi.org/10.1109/SYSCON.2017.7934753
  3. [3] D. Petković, M. Issa, N. D. Pavlović, L. Zentner, and Ž. Ćojbašić, “Adaptive neuro fuzzy controller for adaptive compliant robotic gripper,” Expert Syst. Appl., Vol.39, No.18, pp. 13295-13304, 2012. https://doi.org/10.1016/j.eswa.2012.05.072
  4. [4] J. Leigh, S. Jung, Y. Kim, S. Park, H. Seo, H. Yeom, C. Chung, S. Kim, and M. Bang, “Development of brain-machine interface for integrated robot arm-gripper system control using non-invasive and less-invasive technology,” J. of the Neurological Sciences, Vol.381, pp. 1129-1130, 2017. https://doi.org/10.1016/j.jns.2017.08.3184
  5. [5] A. Ghosh, C. Yoon, F. Ongaro, S. Scheggi, F. M. Selaru, S. Misra, and D. H. Gracias, “Stimuli-Responsive Soft Untethered Grippers for Drug Delivery and Robotic Surgery,” Frontiers in Mechanical Engineering, Vol.3, No.7, 2017. https://doi.org/10.3389/fmech.2017.00007
  6. [6] H. J. Lee, J.-K. Ryu, J. Kim, Y. J. Shin, K.-S. Kim, and S. Kim, “Design of modular gripper for explosive ordinance disposal robot manipulator based on modified dual-mode twisting actuation,” Int. J. of Control, Automation and Systems, Vol.14, No.5, pp. 1322-1330, 2016. https://doi.org/10.1007/s12555-014-0440-6
  7. [7] C. Beltran-Gonzalez, A. Gasteratos, A. Amanatiadis, D. Chrysostomou, R. Guzman, A. Toth, L. Szollosi, A. Juhasz, and P. Galambos, “Methods and techniques for intelligent navigation and manipulation for bomb disposal and rescue operations,” IEEE Int. Workshop on Safety, Security and Rescue Robotics, Rome, Italy, 2007. https://doi.org/10.1109/SSRR.2007.4381291
  8. [8] H. Yaguchi, K. Nagahama, T. Hasegawa, and M. Inaba, “Development of an Autonomous Tomato Harvesting Robot with Rotational Plucking Gripper,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Daejeon, Korea, 2016. https://doi.org/10.1109/IROS.2016.7759122
  9. [9] J. R. Davidson, A. Silwal, C. J. Hohimer, M. Karkee, C. Mo, and Q. Zhang, “Proof-of-concept of a robotic apple harvester,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Daejeon, Korea, 2016. https://doi.org/10.1109/IROS.2016.7759119
  10. [10] R. Jonschkowski, C. Eppner, S. Hofer, R. Martin-Martin, and O. Brock, “Probabilistic Multi-Class Segmentation for the Amazon Picking Challenge,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Daejeon, Korea, 2016. https://doi.org/10.1109/IROS.2016.7758087
  11. [11] C. Liang, K. Chee, Y. Zou, H. Zhu, A. Causo, S. Vidas, T. Teng, I. Chen, K. Low, and C. Cheah, “Automated Robot Picking System for E-Commerce Fulfillment Warehouse Application,” The 14th IFToMM World Congress, Taipei, Taiwan, 2015. https://doi.org/10.6567/IFTOMM.14TH.WC.OS13.077
  12. [12] J. L. Espanola, A. A. Bandala, R. R. P. Vicerra, and E. P. Dadios, “Design of a Fuzzy-Genetic Controller for an Articulated Robot Gripper,” Proc. of IEEE Reg. 10 Annu. Int. Conf. (TENCON 2018), pp. 1701-1706, 2018. https://doi.org/10.1109/TENCON.2018.8650431
  13. [13] D. D. Ligutan, L. J. S. Cruz, M. C. D. P. Del Rosario, J. N. S. Kudhal, A. C. Abad, and E. P. Dadios, “Design and implementation of a fuzzy logic-based joint controller on a 6-DOF robot arm with machine vision feedback,” 2017 Computing Conf., London, pp. 249-257, 2017. https://doi.org/10.1109/SAI.2017.8252111
  14. [14] G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Trans. Fuzzy Syst., Vol.14, No.5, pp. 676-697, 2006. https://doi.org/10.1109/TFUZZ.2006.883415
  15. [15] R. Sadeghian, P. Sedigh, P. Azizinezhad, S. Shahin, and M. T. Masouleh, “Design, Development and Control of a Three Flexible-Fingers Gripper Based on Hand Gesture,” Proc. of 6th RSI Int. Conf. Robot. Mechatronics (IcRoM 2018), pp. 359-363, 2018. https://doi.org/10.1109/ICRoM.2018.8657517
  16. [16] F. Faure et al., “SOFA: A Multi-Model Framework for Interactive Physical Simulation,” Y. Payan (Ed.), “Soft Tissue Biomechanical Modeling for Computer Assisted Surgery,” Springer Berlin, Heidelberg, 2012. https://doi.org/10.1007/8415_2012_125
  17. [17] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller Part I,” IEEE Trans. Syst., Man, Cybern., Vol.20, No.2, pp. 404-418, 1990. https://doi.org/10.1109/21.52551
  18. [18] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller Part II,” IEEE Trans. Syst., Man, Cybern., Vol.20, No.2, pp. 419-435, 1990. https://doi.org/10.1109/21.52552
  19. [19] D. D. Ligutan, A. C. Abad, and E. P. Dadios, “Adaptive Robotic Arm Control Using Artificial Neural Network,” 2018 IEEE 10th Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 2018. https://doi.org/10.1109/HNICEM.2018.8666292
  20. [20] K. H. Su, S. J. Huang, and C. Y. Yang, “Implementation of robotic gripper based on pressure module and smart fuzzy controller,” 2014 Int. Conf. on Fuzzy Theory and its Applications (iFUZZY2014), pp. 57-60, 2014. https://doi.org/10.1109/iFUZZY.2014.7091232
  21. [21] A. H. Fernando, I. A. V. Marfori, and A. B. Maglaya, “A comparative study between artificial neural network and linear regression for optimizing a hinged blade cross axis turbine,” 2015 Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Cebu, Philippines, 2015. https://doi.org/10.1109/HNICEM.2015.7393225
  22. [22] A. Fernando and L. G. Lim, “Velocity analysis of a six-wheel modular mobile robot using MATLAB-Simulink,” 2021 IOP Conf. Ser.: Mater. Sci. Eng., Vol.1109, Article No.012037, 2021. https://doi.org/10.1088/1757-899X/1109/1/012037
  23. [23] A. H. Fernando, L. A. G. Lim, A. A. Bandala, R. R. Vicerra, and E. P. Dadios, “Design of a Fuzzy Control Crane Type Robot Arm for EOD Application,” 2021 IEEE 13th Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 2021. https://doi.org/10.1109/HNICEM54116.2021.9732026
  24. [24] R. A. R. Bedruz, J. Martin, Z. Maningo, A. H. Fernando, A. A. Bandala, R. R. P. Vicerra, and E. P. Dadios, “Dynamic Peloton Formation Configuration Algorithm of Swarm Robots for Aerodynamic Effects Optimization,” 2019 7th Int. Conf. on Robot Intelligence Technology and Applications (RiTA), Daejeon, Korea, pp. 264-267, 2019. https://doi.org/10.1109/RITAPP.2019.8932871

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024