single-jc.php

JACIII Vol.27 No.3 pp. 340-345
doi: 10.20965/jaciii.2023.p0340
(2023)

Research Paper:

Motion Analysis and Experiment of Multiple Magnetic Small-Scale Soft Robots

Pan Zhang*,**,***,† ORCID Icon, Wenjie Qin*,**,***, Haoyun Ma*,**,***, Jundong Wu*,**,***, and Yangwu Wang*,**,*** ORCID Icon

*School of Automation, China University of Geosciences
Wuhan , China

**Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems
Wuhan , China

***Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education
Wuhan , China

Corresponding author

Received:
November 24, 2022
Accepted:
January 2, 2023
Published:
May 20, 2023
Keywords:
multiple magnetic soft robots, different magnetic strength, design and fabrication method, magnetic response property, multiple motion modes
Abstract

Since magnetic field is penetrating and harmless to human body, magnetic soft robots driven by magnetic field have great potential in medical fields. Thus, magnetic soft robots have attracted wide attention. However, the current researches mainly focus on the design of a single magnetic soft robot. Multiple magnetic soft robots also deserve to be studied due to their applications in collaborative operation. This paper presents a new design and fabrication method of multiple magnetic small-scale soft robots with different magnetic strength, size, and length-width ratio. The robots can be controlled to move in different motion modes and motion states under identical magnetic field. By analyzing their magnetic response property, which is the switching conditions between the two motion modes, and analyzing their states of the walking motion, two robots are selected from a batch of fabricated robots to carry out experiment. The results show that the two robots can move in different motion modes in the identical magnetic field.

Cite this article as:
P. Zhang, W. Qin, H. Ma, J. Wu, and Y. Wang, “Motion Analysis and Experiment of Multiple Magnetic Small-Scale Soft Robots,” J. Adv. Comput. Intell. Intell. Inform., Vol.27 No.3, pp. 340-345, 2023.
Data files:
References
  1. [1] C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, T. Nishi, S. Kikuchi, T. Matsubara, and K. Harada, “Learning force control for contact-rich manipulation tasks with rigid position-controlled robots,” IEEE Robotics and Automation Letters, Vol.5, No.4, pp. 5709-5716, 2020. https://doi.org/10.1109/LRA.2020.3010739
  2. [2] P. K. Singh and C. M. Krishna, “Continuum arm robotic manipulator: A review,” Universal J. of Mechanical Engineering, Vol.2, No.6, pp. 193-198, 2014. https://doi.org/10.13189/ujme.2014.020603
  3. [3] Y. Dai, S. Liang, Y. Chen, Y. Feng, D. Chen, B. Song, X. Bai, D. Zhang, L. Feng, and F. Arai, “Untethered Octopus-Inspired Millirobot Actuated by Regular Tetrahedron Arranged Magnetic Field,” Advanced Intelligent Systems, Vol.2, No.5, Article No.1900148, 2020. https://doi.org/10.1002/aisy.201900148
  4. [4] T. Xu, J. Zhang, M. Salehizadeh, O. Onaizah, and E. Diller, “Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions,” Science Robotics, Vol.4, No.29, 2019. https://doi.org/10.1126/scirobotics.aav4494
  5. [5] H. A. Sonar and J. Paik, “Soft pneumatic actuator skin with piezoelectric sensors for vibrotactile feedback,” Frontiers in Robotics and AI, Vol.2, Article No.38, 2016. https://doi.org/10.3389/frobt.2015.00038
  6. [6] S. Zhao, Z. Yan, Q. Men, H. Xiao, X. Lai, and M. Wu, “Modified Three-Element Modeling and Robust Tracking Control for a Planar Pneumatic Soft Actuator,” IEEE Trans. on Industrial Electronics, 2022. https://doi.org/10.1109/TIE.2022.3206693
  7. [7] M. Sitti and D. S. Wiersma, “Pros and cons: Magnetic versus optical microrobots,” Advanced Materials, Vol.32, No.20, Article No.1906766, 2020. https://doi.org/10.1002/adma.201906766
  8. [8] S. Ijaz, H. Li, M. C. Hoang, C. S. Kim, D. Bang, E. Choi, and J. O. Park, “Magnetically actuated miniature walking soft robot based on chained magnetic microparticles-embedded elastomer,” Sensors and Actuators A: Physical, Vol.301, Article No.111707, 2020. https://doi.org/10.1016/j.sna.2019.111707
  9. [9] A. Kotikian, R. L. Truby, J. W. Boley, T. J. White, and J. A. Lewis, “3D printing of liquid crystal elastomeric actuators with spatially programed nematic order,” Advanced Materials, Vol.30, No.10, Article No.1706164, 2018. https://doi.org/10.1002/adma.201706164
  10. [10] S. A. Huettel, A. W. Song, and G. McCarthy, “Functional magnetic resonance imaging,” Sunderland: Sinauer Associates, 2004.
  11. [11] M. Su, T. Xu, Z. Lai, C. Huan, J. Liu, and X. Wu, “Double-modal locomotion and application of soft cruciform thin-film microrobot,” IEEE Robotics and Automation Letters, Vol.5, No.2, pp. 806-812, 2020. https://doi.org/10.1109/LRA.2020.2965912
  12. [12] W. Hu, G. Z. Lum, M. Mastrangeli, and M. Sitti, “Small-scale soft-bodied robot with multimodal locomotion,” Nature, Vol.554, No.7690, pp. 81-85, 2018. https://doi.org/10.1038/nature25443
  13. [13] X. Du, H. Cu, T. Xu, C. Huang, Y. Wan, Q. Zha, Y. Xu, and X. Wu, “Reconfiguration, camouflage, and color-shifting for bioinspired adaptive hydrogel-based millirobots,” Advanced Functional Materials, Vol.30, No.10, Article No.1909202, 2020. https://doi.org/10.1002/adfm.201909202
  14. [14] Y. Kim, G. A. Parada, S. Li, and X. Zhao, “Ferromagnetic soft continuum robots,” Science Robotics, Vol.4, No.33, Article No.eaax7329, 2019. https://doi.org/10.1126/scirobotics.aax7329
  15. [15] L. Wang, C. F. Guo, and X. Zhao, “Magnetic soft continuum robots with contact forces,” Extreme Mechanics Letters, Vol.51, Article No.101604, 2022. https://doi.org/10.1016/j.eml.2022.101604
  16. [16] J. Li, X. Wu, C. Huang, L. Manamanchaiyaporn, W. Shan, X. Yan, and T. Xu, “3-D autonomous manipulation system of helical microswimmers with online compensation update,” IEEE Trans. on Automation Science and Engineering, Vol.18, No.3, pp. 1380-1391, 2020. https://doi.org/10.1109/TASE.2020.3006131
  17. [17] X. Wang, C. Hu, L. Schurz, C. D. Marco, X. Chen, S. Pané, and B. J. Nelson, “Surface-chemistry-mediated control of individual magnetic helical microswimmers in a swarm,” ACS Nano, Vol.12, No.6, pp. 6210-6217, 2018. https://doi.org/10.1021/acsnano.8b02907
  18. [18] S. Yi, L. Wang, Z. Chen, J. Wang, X. Song, P. Liu, Y. Zhang, Q. Luo, L. Peng, Z. Wu, C. Guo, and L. Jiang, “High-throughput fabrication of soft magneto-origami machines,” Nature Communications, Vol.13, No.1, Article No.4177, 2022. https://doi.org/10.1038/s41467-022-31900-5
  19. [19] T. Soichiro, S. Tottori, N. Sugita, R. Kometani, S. Ishihara, and M. Mitsuishi, “Selective control method for multiple magnetic helical microrobots,” J. of Micro-Nano Mechatronics, Vol.6, pp. 89-95, 2011. https://doi.org/10.1007/s12213-011-0035-8
  20. [20] D. Wong, E. B. Steager, and V. Kumar, “Independent Control of Identical Magnetic Robots in a Plane,” IEEE Robotics and Automation Letters, Vol.1, No.1, pp. 554-561, 2016. https://doi.org/10.1109/LRA.2016.2522999
  21. [21] A. W. Mahoney, N. D. Nelson, K. E. Peyer, B. J. Nelson, and J. J. Abbott, “Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems,” Applied Physics Letters, Vol.104, No.14, Article No.144101, 2014. https://doi.org/10.1063/1.4870768
  22. [22] T. Xu, C. Huang, Z. Lai, and X. Wu, “Independent control strategy of multiple magnetic flexible millirobots for position control and path following,” IEEE Trans. on Robotics, Vol.38, No.5, pp. 2875-2887, 2022. https://doi.org/10.1109/TRO.2022.3157147
  23. [23] H. Xiang, M. Li, T. Zhang, S. Wang, M. Zhang, Y. Song, W. Huo, and X. Huang, “Motion characteristics of untethered swimmer with magnetoelastic material,” Smart Materials and Structures, Vol.30, Article No.075030, 2021. https://doi.org/10.1088/1361-665X/ac03c6

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024