single-jc.php

JACIII Vol.26 No.5 pp. 824-833
doi: 10.20965/jaciii.2022.p0824
(2022)

Review:

A Review of Smart Battery Management Systems for LiFePO4: Key Issues and Estimation Techniques for Microgrids

Jo-Ann V. Magsumbol*1,†, Marife A. Rosales*1, Maria Gemel B. Palconit*1, Ronnie S. Concepcion II*2,*3, Argel A. Bandala*1,*3, Ryan Rhay P. Vicerra*2,*3, Edwin Sybingco*1,*3, Alvin Culaba*3,*4, and Elmer P. Dadios*2,*3

*1Department of Electronics and Computer Engineering, De La Salle University (DLSU)
2401 Taft Avenue, Malate, Manila 1004, Philippines

*2Department of Manufacturing Engineering and Management, De La Salle University (DLSU)
2401 Taft Avenue, Malate, Manila 1004, Philippines

*3Center for Engineering and Sustainable Development Research, De La Salle University (DLSU)
2401 Taft Avenue, Malate, Manila 1004, Philippines

*4Department of Mechanical Engineering, De La Salle University (DLSU)
2401 Taft Avenue, Malate, Manila 1004, Philippines

Corresponding author

Received:
May 3, 2022
Accepted:
July 15, 2022
Published:
September 20, 2022
Keywords:
battery management system, state of charge, state of health, remaining useful life, LiFePO4
Abstract

Lithium iron phosphate (LiFePO4) has become the top choice battery chemical in photovoltaic (PV) system nowadays due to numerous advantages as compared to lead acid batteries. However, LiFePO4 needs a battery management system to optimize energy utilization. State of charge (SoC), state of health (SoH), cell balancing, remaining useful life are some of its crucial parameters. This review paper discusses overview of battery management system (BMS) functions, LiFePO4 characteristics, key issues, estimation techniques, main features, and drawbacks of using this battery type.

Cite this article as:
J. Magsumbol, M. Rosales, M. Palconit, R. II, A. Bandala, R. Vicerra, E. Sybingco, A. Culaba, and E. Dadios, “A Review of Smart Battery Management Systems for LiFePO4: Key Issues and Estimation Techniques for Microgrids,” J. Adv. Comput. Intell. Intell. Inform., Vol.26, No.5, pp. 824-833, 2022.
Data files:
References
  1. [1] İ. Aydin and Ö. Üstün, “A basic battery management system design with IoT feature for LiFePO4 batteries,” 10th Int. Conf. Electr. Electron. Eng. (ELECO), pp. 1309-1313, 2017.
  2. [2] M. Lukasiewycz, S. Steinhorst, and S. Narayanaswamy, “Verification of balancing architectures for modular batteries,” Int. Conf. Hardware/Software Codesign Syst. Synth. (CODES+ISSS), doi: 10.1145/2656075.2656104, 2014.
  3. [3] H. A. Calinao et al., “Transitional Considerations for Energy Storage Policy Recommendation in the Philippines,” IEEE 12th Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), doi: 10.1109/HNICEM51456.2020.9400072, 2020.
  4. [4] S. Z. Baykara, H. E. Figen, and M. Karaismailoglu, “9.11-Environmental Issues and Social Issues with Renewable Energy,” T. M. Letcher (Ed.), “Comprehensive Renewable Energy (Second Edition),” pp. 152-164, Elsevier, 2020.
  5. [5] J. D. D. Guia et al., “Solar Irradiance Prediction Based on Weather Patterns Using Bagging-Based Ensemble Learners with Principal Component Analysis,” IEEE 8th R10 Humanit. Technol. Conf. (R10-HTC), doi: 10.1109/R10-HTC49770.2020.9356988, 2020.
  6. [6] H. Rahimi-Eichi et al., “Battery management system: An overview of its application in the smart grid and electric vehicles,” IEEE Ind. Electron. Mag., Vol.7, No.2, pp. 4-16, doi: 10.1109/MIE.2013.2250351, 2013.
  7. [7] H. A. Calinao et al., “Battery management system with temperature monitoring through fuzzy logic control,” IEEE Region 10 Int. Conf. (TENCON), pp. 852-857, doi: 10.1109/TENCON50793.2020.9293756, 2020.
  8. [8] Vertiv, “The Advantages of Using Lithium-Ion Batteries as A Backup Power Source in Single-Phase UPS Applications for Remote and Edge Data Centers, How Branch Offices, Server Rooms, and Network Closets Can Benefit from Using Lithium-Ion Battery Systems,” https://www.vertiv.com/49e011/globalassets/products/critical-power/uninterruptible-power-supplies-ups/advantages-of-using-lithium-ions-batteries-sl-70595.pdf [accessed July 4, 2021]
  9. [9] Amin et al., “Passive balancing battery management system using MOSFET internal resistance as balancing resistor,” Int. Conf. on Sustainable Energy Engineering and Application (ICSEEA), pp. 151-155, doi: 10.1109/ICSEEA.2017.8267701, 2017.
  10. [10] H. Abdi et al., “Chapter 7 – Energy Storage Systems,” G. B. Gharehpetian and S. M. M. Agah (Eds.), “Distributed Generation Systems Design, Operation and Grid Integration,” pp. 333-368, Butterworth-Heinemann, doi:10.1016/B978-0-12-804208-3.00007-8, 2017.
  11. [11] K. Ogura and M. L. Kolhe, “4 – Battery technologies for electric vehicles,” Electric Vehicles: Prospects and Challenges, doi: 10.1016/B978-0-12-803021-9.00004-5, pp. 139-167, 2017.
  12. [12] B. Sundén, “Chapter 6 – Thermal management of batteries,” Hydrog. Batter. Fuel Cells, pp. 93-110, doi: 10.1016/b978-0-12-816950-6.00006-3, 2019.
  13. [13] N. Agarwal et al., “Design a Battery Monitoring System for Lead-Acid Battery,” Int. J. Creat. Res. Thoughts (IJCRT), pp. 306-311, 2017.
  14. [14] J. Xie, J. Ma, and K. Bai, “Enhanced coulomb counting method for state-of-charge estimation of lithium-ion batteries based on Peukert’s law and coulombic efficiency,” J. Power Electron., Vol.18, No.3, pp. 910-922, doi: 10.6113/JPE.2018.18.3.910, 2018.
  15. [15] M. Danko et al., “Overview of batteries State of Charge estimation methods,” Transp. Res. Procedia, Vol.40, pp. 186-192, doi: 10.1016/j.trpro.2019.07.029, 2019.
  16. [16] H. Sheng and J. Xiao, “Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine,” J. Power Sources, Vol.281, pp. 131-137, doi: 10.1016/j.jpowsour.2015.01.145, 2015.
  17. [17] Y. Zou et al., “Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles,” J. Power Sources, Vol.273, pp. 793-803, doi: 10.1016/j.jpowsour.2014.09.146, 2015.
  18. [18] W. Y. Chang, “The State of Charge Estimating Methods for Battery: A Review,” Int. Scholarly Research Notices, doi: 10.1155/2013/953792, 2013.
  19. [19] R. Li et al., “Prediction of state of charge of lithium-ion rechargeable battery with electrochemical impedance spectroscopy theory,” 5th IEEE Conf. Ind. Electron. Appl. (ICIEA), pp. 684-688, doi: 10.1109/ICIEA.2010.5516984, 2010.
  20. [20] C. Pastor-Fernández et al., “A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-Ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes Within Battery Management Systems,” J. Power Sources, Vol.360, pp. 301-318, doi: 10.1016/j.jpowsour.2017.03.042, 2017.
  21. [21] M. Mawatwal, A. Mohanty, and G. S. Anitha, “State of Charge Estimation for Rechargeable Lithium-Ion Battery Using ANFIS MATLAB,” Int. J. Eng. Res. and Technol., Vol.9, No.3, pp. 703-708, doi: 10.17577/ijertv9is030565, 2020.
  22. [22] W. Wang et al., “Unscented kalman filter-based battery SOC estimation and peak power prediction method for power distribution of hybrid electric vehicles,” IEEE Access, Vol.6, pp. 35957-35965, doi: 10.1109/ACCESS.2018.2850743, 2018.
  23. [23] G. L. Plett, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs – Part 3. State and parameter estimation,” J. Power Sources, Vol.134, No.2, pp. 277-292, doi: 10.1016/j.jpowsour.2004.02.033, 2004.
  24. [24] J. T. Ambadan and Y. Tang, “Sigma-point Kalman filter data assimilation methods for strongly nonlinear systems,” J. Atmos. Sci., Vol.66, No.2, pp. 261-285, doi: 10.1175/2008JAS2681.1, 2009.
  25. [25] G. L. Plett, “Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2: Simultaneous state and parameter estimation,” J. Power Sources, Vol.161, No.2, pp. 1369-1384, doi: 10.1016/j.jpowsour.2006.06.004, 2006.
  26. [26] W. Li et al., “Digital twin for battery systems: Cloud battery management system with online state-of-charge and state-of-health estimation,” J. Energy Storage, Vol.30, doi: 10.1016/j.est.2020.101557, 2020.
  27. [27] S. Liu et al., “A Novel Discharge Mode Identification Method for Series-Connected Battery Pack Online State-of-Charge Estimation over a Wide Life Scale,” IEEE Trans. Power Electron., Vol.36, No.1, pp. 326-341, doi: 10.1109/TPEL.2020.3001020, 2021.
  28. [28] J. Tian, R. Xiong, and W. Shen, “A review on state of health estimation for lithium ion batteries in photovoltaic systems,” eTransportation, Vol.2, doi: 10.1016/j.etran.2019.100028, 2019.
  29. [29] Y. Cui et al., “State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method,” Energy, Vol.144, pp. 647-656, doi: 10.1016/j.energy.2017.12.033, 2018.
  30. [30] M. S. H. Lipu et al., “A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations,” J. Clean. Prod., Vol.205, pp. 115-133, doi: 10.1016/j.jclepro.2018.09.065, 2018.
  31. [31] H. Tian et al., “A review of the state of health for lithium-ion batteries: Research status and suggestions,” J. Clean. Prod., Vol.261, doi: 10.1016/j.jclepro.2020.120813, 2020.
  32. [32] X. R. Kong et al., “State of Health Estimation for Lithium-Ion Batteries,” IFAC-PapersOnLine, Vol.51, No.18, pp. 667-671, doi: 10.1016/j.ifacol.2018.09.347, 2018.
  33. [33] F. Gao et al., “Study on temperature change of LiFePO4/C battery thermal runaway under overcharge condition,” IOP Conf. Ser.: Earth Environ. Sci., Vol.631, doi: 10.1088/1755-1315/631/1/012114, 2020.
  34. [34] L. Lu et al., “A review on the key issues for lithium-ion battery management in electric vehicles,” J. Power Sources, Vol.226, pp. 272-288, doi: 10.1016/j.jpowsour.2012.10.060, 2013.
  35. [35] M. C. Niculuţǎ and C. Veje, “Analysis of the thermal behavior of a LiFePO4 battery cell,” J. Phys.: Conf. Ser., doi: 10.1088/1742-6596/395/1/012013, 2012.
  36. [36] X. Sui et al., “The degradation behavior of LiFePO4/c batteries during long-term calendar aging,” Energies, doi: 10.3390/en14061732, 2021.
  37. [37] M. S. S. K. Gupta, “Design Challenges of Battery Management Systems,” J. Eng. and Technol., Vol.7, No.2, 2021.
  38. [38] Y. Azizi and S. M. Sadrameli, “Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates,” Energy Convers. Manag., Vol.128, pp. 294-302, doi: 10.1016/j.enconman.2016.09.081, 2016.
  39. [39] X. Hu et al., “Battery Lifetime Prognostics,” Joule, Vol.4, No.2, pp. 310-346, doi: 10.1016/j.joule.2019.11.018, 2020.
  40. [40] N. G. Panwar et al., “Recent Advancements in Battery Management System for Li-Ion Batteries of Electric Vehicles: Future Role of Digital Twin, Cyber-Physical Systems, Battery Swapping Technology, and Nondestructive Testing,” Energy Technol., Vol.9, No.8, doi: 10.1002/ente.202000984, 2021.
  41. [41] A. Samanta and S. S. Williamson, “A survey of wireless battery management system: Topology, emerging trends, and challenges,” Electron., Vol.10, No.18, doi: 10.3390/electronics10182193, 2021.
  42. [42] HIOKI, “Production Processes Development,” https://www.hioki.com/ [accessed February 15, 2022]
  43. [43] Q. Q. Yu et al., “A comparative study on open circuit voltage models for lithium-ion batteries,” Chinese J. of Mechanical Engineering (English Edition), Vol.31, Article No.65, doi: 10.1186/s10033-018-0268-8, 2018.
  44. [44] L. Yao et al., “Challenges and progresses of energy storage technology and its application in power systems,” J. Mod. Power Syst. Clean Energy, Vol.4, No.4, pp. 519-528, doi: 10.1007/s40565-016-0248-x, 2016.
  45. [45] L. Xinggang and X. Rui, “An approach to internal and external temperature estimation for cylindrical battery based on finite difference method,” IFAC-PapersOnLine, Vol.51, No.31, pp. 258-261, doi: 10.1016/j.ifacol.2018.10.046, 2018.
  46. [46] M. Hammami et al., “Thermal and performance analysis of a photovoltaic module with an integrated energy storage system,” Appl. Sci., doi: 10.3390/app7111107, 2017.
  47. [47] V. Vega-Garita et al., “Selecting a suitable battery technology for the photovoltaic battery integrated module,” J. Power Sources, Vol.438, doi: 10.1016/j.jpowsour.2019.227011, 2019.
  48. [48] A. Tomaszewska et al., “Lithium-ion battery fast charging: A review,” eTransportation, Vol.1, doi: 10.1016/j.etran.2019.100011, 2019.
  49. [49] S. F. Schuster et al., “Nonlinear aging characteristics of lithium-ion cells under different operational conditions,” J. Energy Storage, Vol.1, pp. 44-53, doi: 10.1016/j.est.2015.05.003, 2015.
  50. [50] F. Castanedo, “A review of data fusion techniques,” The Sci. World J., doi: 10.1155/2013/704504, 2013.
  51. [51] Y. Yang and H. Li, “Performance analysis of LiFePO4 battery energy storage for utility-scale PV system,” IEEE Energy Convers. Congr. Expo. (ECCE), pp. 414-419, doi: 10.1109/ECCE.2014.6953423, 2014.
  52. [52] R. D. López et al., “Comparison of lead-acid and li-ion batteries lifetime prediction models in stand-alone photovoltaic systems,” Appl. Sci., doi: 10.3390/app11031099, 2021.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Sep. 22, 2022