single-jc.php

JACIII Vol.25 No.5 pp. 625-631
doi: 10.20965/jaciii.2021.p0625
(2021)

Paper:

Application of Fuzzy Logic for Controlling Spray Drying Parameters in Production of Bignay (Antidesma Bunius) Juice Powder

Danielle Grace D. Evangelista*,†, Ryan Rhay P. Vicerra*, Argel A. Bandala**, Edwin Sybingco**, and Elmer P. Dadios*

*Manufacturing Engineering and Management Department, De La Salle University
2401 Taft Avenue, Malate, Manila 1004, Philippines

**Electronics and Communications Engineering Department, De La Salle University
2401 Taft Avenue, Manila 1004, Philippines

Corresponding author

Received:
March 3, 2021
Accepted:
May 23, 2021
Published:
September 20, 2021
Keywords:
spray drying, fuzzy logic, fuzzy logic control, juice powder, bignay
Abstract

Spray drying is a rapid, continuous, cost-effective, reproducible, and scalable process for reducing the moisture content of a fluid material into a solid powder. To improve this process in juice powder production, automation can be applied to increase efficiency and productivity. Hence, fuzzy logic is used in this study as a control system in the spray-drying process of concentrated liquid bignay juice into juice powder, where the inlet temperature and carrier agent concentrations affecting the properties of the juice powder, such as moisture content and product yield, are considered. The proposed fuzzy system can provide feedback to the control variables, inlet temperature, and carrier agent concentration based on the moisture content and product yield of the juice powder.

Cite this article as:
Danielle Grace D. Evangelista, Ryan Rhay P. Vicerra, Argel A. Bandala, Edwin Sybingco, and Elmer P. Dadios, “Application of Fuzzy Logic for Controlling Spray Drying Parameters in Production of Bignay (Antidesma Bunius) Juice Powder,” J. Adv. Comput. Intell. Intell. Inform., Vol.25, No.5, pp. 625-631, 2021.
Data files:
References
  1. [1] M. Z. Islam et al., “Effect of vacuum spray drying on the physicochemical properties, water sorption and glass transition phenomenon of orange juice powder,” J. Food Eng, Vol.169, pp. 131-140, doi: 10.1016/j.jfoodeng.2015.08.024, 2016.
  2. [2] I. Tontul and A. Topuz, “Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties,” Trends Food Sci. Technol., Vol.63, pp. 91-102, doi: 10.1016/j.tifs.2017.03.009, 2017.
  3. [3] V. Patil, A. K. Chauhan, and S. P. Singh, “Original Research Article Influence of Spray Drying Technology on the Physical and Nutritional Properties of Guava Powder,” Int. J. Curr. Microbiol. Appl. Sci., Vol.3, No.9, pp. 1224-1237, 2014.
  4. [4] S. E. Leblanc and D. R. Coughanowr, “Process systems analysis and control,” Third edition, McGraw-Hill, 2009.
  5. [5] P. Goel, S. Goel, and S. Bhatia, “Food quality assessment using fuzzy logic,” 2015 Int. Conf. on Computing for Sustainable Global Development (INDIACom 2015), pp. 1459-1462, 2015.
  6. [6] R. S. Concepcion et al., “Fuzzy Classification Approach on Quality Deterioration Assessment of Tomato Puree in Aerobic Storage using Electronic Nose,” 2019 IEEE 11th Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), doi: 10.1109/hnicem48295.2019.9072853, 2019.
  7. [7] N. Kaushik et al., “Application of fuzzy logic technique for sensory evaluation of high pressure processed mango pulp and litchi juice and its comparison to thermal treatment,” Innov. Food Sci. Emerg. Technol, Vol.32, pp. 70-78, doi: 10.1016/j.ifset.2015.08.007, 2015.
  8. [8] I. M. Javel et al., “Coconut fruit maturity classification using fuzzy logic,” 2018 IEEE 10th Int. Conf. on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM), doi: 10.1109/HNICEM.2018.8666231, 2019.
  9. [9] K. Roy, A. Mukherjee, and D. K. Jana, “Prediction of maximum oil-yield from almond seed in a chemical industry: A novel type-2 fuzzy logic approach,” South African J. Chem. Eng, Vol.29, pp. 1-9, doi: 10.1016/j.sajce.2019.03.001, 2019.
  10. [10] Z. Liang, Y. Li, and L. Xu, “Grain sieve loss fuzzy control system in rice combine harvesters,” Appl. Sci., Vol.9, No.1, doi: 10.3390/app9010114, 2019.
  11. [11] J. P. Rogelio et al., “Rice Bran Drying Kinetics of a Controlled Microwave Vacuum Dryer Optimized PLC-based: A Neuro-fuzzy Approach,” 2020 IEEE 12th Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), pp. 10-15, doi: 10.1109/HNICEM51456.2020.9400029, 2020.
  12. [12] R. R. P. Vicerra et al., “A multiple level MIMO fuzzy logic based intelligence for multiple agent cooperative robot system,” 2015 IEEE Region 10 Conf. (TENCON 2015), doi: 10.1109/TENCON.2015.7372985, 2016.
  13. [13] M. F. Q. Say et al., “2D Position Control of a UAV Using Fuzzy Logic Control,” 2021 IEEE/SICE Int. Symp. on System Integration (SII), pp. 679-683, doi: 10.1109/IEEECONF49454.2021.9382784, 2021.
  14. [14] J. L. Espanola et al., “Design of a Fuzzy-Genetic Controller for an Articulated Robot Gripper,” 2018 IEEE Region 10 Conf. (TENCON 2018), pp. 1701-1706, doi: 10.1109/TENCON.2018.8650431, 2019.
  15. [15] R. A. Bedruz et al., “Design of a Robot Controller for Peloton Formation Using Fuzzy Logic,” 2019 7th Int. Conf. on Robot Intelligence Technology and Applications (RiTA), pp. 83-88, doi: 10.1109/RITAPP.2019.8932858, 2019.
  16. [16] R. K. C. Billones et al., “Vision-based passenger activity analysis system in public transport and bus stop areas,” 2018 IEEE 10th Int. Conf. on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM), doi: 10.1109/HNICEM.2018.8666357, 2019.
  17. [17] R. A. Bedruz et al., “Fuzzy logic based vehicular plate character recognition system using image segmentation and scale-invariant feature transform,” 2016 IEEE Region 10 Conf. (TENCON), pp. 676-681, doi: 10.1109/TENCON.2016.7848088, 2017.
  18. [18] C. R. M. Reñosa et al., “Pre-detection of the Probable Occurrence of a Cardiovascular Disease through Data Analysis using Fuzzy Logic,” 2020 IEEE 12th Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), doi: 10.1109/HNICEM51456.2020.9400110, 2020.
  19. [19] J. B. U. Dimatira et al., “Application of fuzzy logic in recognition of tomato fruit maturity in smart farming,” 2016 IEEE Region 10 Conf. (TENCON), pp. 2031-2035, doi: 10.1109/TENCON.2016.7848382, 2017.
  20. [20] J. A. V. Magsumbol et al., “Development of a cooling system for Tomato using fuzzy logic approach,” 2017 IEEE 9th Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), doi: 10.1109/HNICEM.2017.8269510, 2017.
  21. [21] K. K. A. David et al., “Unmanned underwater vehicle navigation and collision avoidance using fuzzy logic,” Proc. of the 2013 IEEE/SICE Int. Symp. on System Integration, pp. 126-131, doi: 10.1109/SII.2013.6776715, 2013.
  22. [22] E. A. H. Fernando et al., “Design of a fuzzy logic controller for a vent fan and growlight in a tomato growth chamber,” 2017IEEE 9th Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), doi: 10.1109/HNICEM.2017.8269526, 2017.
  23. [23] G. M. N. Principe, R. R. R. Vicerra, and A. A. Bandala, “Fuzzy power control for non-linear distortion suppression in MIMO-OFDM systems,” 2020 IEEE Region 10 Conf. (TENCON), pp. 286-291, doi: 10.1109/TENCON50793.2020.9293771, 2020.
  24. [24] N. J. Codico, K. K. de Regla, and D. G. Evangelista, “The use of spray drying technology on the production of bignay (Antidesma bunius) juice powder,” 78th PiChE National Convention: Integration of Chemical Engineers in the Global Community, p. 119, 2017.
  25. [25] P. Robert and C. Fredes, “The encapsulation of anthocyanins from berry-type fruits. Trends in foods,” Molecules, Vol.20, No.4, pp. 5875-5888, doi: 10.3390/molecules20045875, 2015.
  26. [26] A. Sosnik and K. P. Seremeta, “Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers,” Adv. Colloid Interface Sci., Vol.223, pp. 40-54, doi: 10.1016/j.cis.2015.05.003, 2015.
  27. [27] N. Phisut, “Spray drying technique of fruit juice powder: some factors influencing the properties of product,” Int. Food Res. J., Vol.19, No.4, pp. 1297-1306, 2012.
  28. [28] A. Sharifi and M. Niakousari, “Effect of spray drying conditions on the physicochemical properties of barberry (Berberis vulgaris) extract powder,” Int. Food Res. J., Vol.22, No.6, pp. 2364-2370, 2015.
  29. [29] T. C. Kha, M. H. Nguyen, and P. D. Roach, “Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder,” J. Food Eng, Vol.98, No.3, pp. 385-392, doi: 10.1016/j.jfoodeng.2010.01.016, 2010.
  30. [30] R. V. Tonon, S. S. Freitas, and M. D. Hubinger, “Spray drying of açai (Euterpe oleraceae Mart.) juice: Effect of inlet air temperature and type of carrier agent,” J. Food Process. Preserv, Vol.35, No.5, pp. 691-700, doi: 10.1111/j.1745-4549.2011.00518.x, 2011.
  31. [31] S. Santhalakshmy et al., “Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder,” Powder Technol, Vol.274, pp. 37-43, doi: 10.1016/j.powtec.2015.01.016, 2015.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Oct. 22, 2021