single-jc.php

JACIII Vol.24 No.7 pp. 908-916
doi: 10.20965/jaciii.2020.p0908
(2020)

Note:

Design and Analysis of New Asynchronous Motor Type for Electric Vehicle

Yong Yan*,†, Shimin Wang*, Taotao Yang*, and Xiangyu Meng**

*Zaozhuang Vocational College of Science and Technology
Tengzhou, Shandong, China

**Shandong University of Technology
Zibo, Shandong, China

Corresponding author

Received:
October 11, 2020
Accepted:
October 29, 2020
Published:
December 20, 2020
Keywords:
electric vehicles, asynchronous motors, simulation
Abstract

Based on the dynamic characteristics of electric vehicles, this study describes the use of existing basic parameters of a specific electric vehicle to optimize the performance parameters of an asynchronous motor. In addition, a theoretical reference of such an asynchronous motor is provided.

Synchronous motors for electric vehicles

Synchronous motors for electric vehicles

Cite this article as:
Y. Yan, S. Wang, T. Yang, and X. Meng, “Design and Analysis of New Asynchronous Motor Type for Electric Vehicle,” J. Adv. Comput. Intell. Intell. Inform., Vol.24 No.7, pp. 908-916, 2020.
Data files:
References
  1. [1] R. P. de F. Martins, D. M. Sousa, V. F. Pires et al., “Reducing the power losses of a commercial electric vehicle: Analysis based on an asynchronous motor control,” 4th Int. Conf. on Power Engineering, Energy and Electrical Drives, pp. 1247-1252, 2013.
  2. [2] G. Ge, Z. Wang, and X. Ma, “Design of a New Type of Soft Starter of Three-phase Asynchronous Motor,” Industry and Mine Automation, 2009.
  3. [3] C. Ulu and G. Kömürgöz, “Design of 75 kW asynchronous motor for electric vehicle applications,” National Conf. on Electrical, Electronics and Biomedical Engineering (ELECO), pp. 286-290, 2016.
  4. [4] Y.-N. Dong, J.-H. Yan, Y.-S. Chen, Z.-F. Ying, and X.-D. Zhang, “Optimization Design of Stator Slot for Asynchronous Motor of Electric Vehicle,” Small & Special Electrical Machines, No.9, pp. 49-53, 2018.
  5. [5] T. Szolc, R. Konowrocki, M. Michajłow, and A. Pregowska, “An investigation of the dynamic electromechanical coupling effects in machine drive systems driven by asynchronous motors,” Mechanical Systems and Signal Processing, Vol.49, Nos.1-2, pp. 118-134, 2014.
  6. [6] J. C. Maxwell, “A Treatise on Electricity and Magnetism,” 3rd Edition, Vol.2, Oxford University Press, pp. 68-73, 1892.
  7. [7] Y. Shen, J. B. Cao, X. H. Zhu, X. J. Lei, Q. L. Ye, M. J. Yan, K. Chen, and Z. Gao, “Design of Experimental Apparatus for Asynchronous Motor Principle,” Key Engineering Materials, Vol.620, pp. 341-346, 2014.
  8. [8] B. Silwal, P. Rasilo, A. Belahcen, and A. Arkkio, “Influence of the rotor eccentricity on the torque of a cage induction machine,” Archives of Electrical Engineering, Vol.66, No.2, pp. 383-396, 2017.
  9. [9] V. I. Mishin, N. T. Lut, S. S. Makarevich, and R. N. Chuenko, “Analogs and Characteristics of Compensated Asynchronous Machines with Different Numbers of Phases,” Russian Electrical Engineering, Vol.87, No.12, pp. 653-660, 2016.
  10. [10] A. EL-Refaie and M. Shah, “Induction machine performance with fractional-slot concentrated windings,” COMPEL: The Int. J. for Computation and Mathematics in Electrical and Electronic Engineering, Vol.31, No.1, pp. 119-139, 2012.
  11. [11] J. Rusek, “Categorization of Induction Machines Resulting from Their Harmonic-Balance Model,” Electromagnetics, Vol.23, No.3, pp. 277-292, 2003.
  12. [12] Y. Oguz and M. Dede, “Speed estimation of vector controlled squirrel cage asynchronous motor with artificial neural networks,” Energy Conversion and Management, Vol.52, No.1, pp. 675-686, 2011.
  13. [13] Y. Hu and S. Guo, “Asynchronous Motor Vector Control System Based on Space Vector Pulse Width Modulation,” W. Wang (Ed.), “Mechatronics and Automatic Control Systems,” pp. 675-682, Springer, 2013.
  14. [14] E. Cazacu, V. Ioniţă, and L. Petrescu, “Transient State Characterization of Asynchronous Motors in Modern Low-voltage Electric Installations,” The Scientific Bulletin of Electrical Engineering Faculty, Vol.18, No.1, pp. 19-25, 2018.
  15. [15] V. A. Denisov, M. N. Tret’yakova, and O. A. Borodin, “A Comparative Analysis of Transient Processes in an Asynchronous Motor,” Russian Electrical Engineering, Vol.89, No.3, pp. 137-142, 2018.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 06, 2024