Paper:
Study on Collaborative Filtering Recommendation Model Fusing User Reviews
Heyong Wang, Ming Hong, and Jinjiong Lan
Department of E-Commerce, School of Economics and Commerce, South China University of Technology
B10 South China University of Technology, Panyu District, Guangzhou, Guangdong 510006, China
The traditional collaborative filtering model suffers from high-dimensional sparse user rating information and ignores user preference information contained in user reviews. To address the problem, this paper proposes a new collaborative filtering model UL_SAM (UBCF_LDA_SIMILAR_ADD_MEAN) which integrates topic model with user-based collaborative filtering model. UL_SAM extracts user preference information from user reviews through topic model and then fuses user preference information with user rating information by similarity fusion method to create fusion information. UL_SAM creates collaborative filtering recommendations according to fusion information. It is the advantage of UL_SAM on improving recommendation effectiveness that UL_SAM enriches information for collaborative recommendation by integrating user preference with user rating information. Experimental results of two public datasets demonstrate significant improvement on recommendation effectiveness in our model.
- [1] J. G. Liu, T. Zhou, and B. H. Wang, “Advances in personalized recommendation system,” Progress in Natural Science, Vol.19, No.1, pp. 1-15, 2009 (in Chinese).
- [2] I. Obadić, G. Madjarov, I. Dimitrovski, and D. Gjorgjevikj, “Addressing Item-Cold Start Problem in Recommendation Systems Using Model Based Approach and Deep Learning,” Int. Conf. on ICT Innovations, pp. 176-185, 2017.
- [3] L. Zheng, V. Noroozi, and P. S. Yu, “Joint Deep Modeling of Users and Items Using Reviews for Recommendation,” Proc. of 10th ACM Int. Conf. on Web Search and Data Mining, pp. 425-434, 2017.
- [4] S. Deng, L. Huang, G. Xu, X. Wu, and Z. Wu, “On deep learning for trust-aware recommendations in social networks,” IEEE Trans. on Neural Networks and Learning Systems, Vol.28, No.5, pp. 1164-1177, 2016.
- [5] X. H. Ling, X. Wu, X. D. Li, and B. P. Yan, “Comparison Study of Internet Recommendation System,” J. of Software, Vol.20, No.2, pp. 350-362, 2009.
- [6] A. L. Deng, Y. Y. Zhu, and B. L. Shi, “A Collaborative Filtering Recommendation Algorithm Based on Item Rating Prediction,” J. of Software, Vol.9, No.14, pp. 1621-1628, 2003.
- [7] J. Yuan, W. Shalaby, M. Korayem, D. Lin, K. AlJadda, and J. Luo, “Solving cold-start problem in large-scale recommendation engines: A deep learning approach,” IEEE Int. Conf. on Big Data, pp. 1901-1910, 2016.
- [8] S. Cao, N. Yang, and Z, Liu, “Online Short Video Recommendation Based on Stacked Denoising Auto-Encoder,” J. of Residuals Science & Technology, Vol.13, No.8, pp. 1-6, 2016.
- [9] X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and F. Zhang, “A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems,” Proc. of the 31st AAAI Conf. on Artificial Intelligence (AAAI-17), pp. 1309-1315, 2017.
- [10] M. Polato and F. Aiolli, “Boolean kernels for collaborative filtering in top-N item recommendation,” Neurocomputing, Vol. 286, pp. 214-225, 2018.
- [11] H. Li, K. Li, J. An, and K. Li, “MSGD: A Novel Matrix Factorization Approach for Large-scale Collaborative Filtering Recommender Systems on GPUs,” IEEE Trans. on Parallel and Distributed Systems, Vol.29, No.7, pp. 1530-1544, 2018.
- [12] R. van den Berg, T. N. Kipf, and M. Welling, “Graph Convolutional Matrix Completion,” arXiv: 1706.02263, pp. 1-10, 2017.
- [13] S. Deng, L. Huang, G. Xu, X. Wu, and Z. Wu, “On deep learning for trust-aware recommendations in social networks,” IEEE Trans. on Neural Networks and Learning Systems, Vol.28, No.5, pp. 1164-1177, 2016.
- [14] T. Gao, X. Li, Y. Chai, and Y. Tang, “Deep learning with consumer preferences for recommender system,” 2016 IEEE Int. Conf. on Information and Automation (ICIA), pp. 1556-1561, 2016.
- [15] G. N. Hu, X. Y. Dai, F. Y. Qiu, R. Xia, T. Li, S.-J. Huang, and J.-J. Chen, “Collaborative Filtering with Topic and Social Latent Factors Incorporating Implicit Feedback,” ACM Trans. on Knowledge Discovery from Data, Vol.12, No.2, Article No.23, 2018.
- [16] N. Guo, B. Wang, Y. Hou, and P. Chang, “Collaborative Filtering Recommendation Algorithm Based on Characteristics of Social Network,” J. of Frontiers of Computer Science and Technology, Vol.12, No.2, pp. 208-217, 2018.
- [17] M. He and W. Ren, “Attribute Reduction with Rough Set in Context-Aware Collaborative Filtering,” Chinese J. of Electronics, Vol.26, No.5, pp. 973-980, 2017.
- [18] X. Wu, Q. Chen, H. Liu, and C. He, “Collaborative Filtering Recommendation Algorithm Based on Representation Learning of Knowledge Graph,” Computer Engineering, Vol.44, No.2, pp. 226-232,263, 2018.
- [19] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” J. of Machine Learning Research, Vol.3, pp. 993-1022, 2003.
- [20] C. Y. Zhang, J. L. Sun, and Y. Q. Ding, “Topic Mining for Microblog Based on MB-LDA Model,” J. of Computer Research and Development, Vol.10, No.48, pp. 1795-1802, 2011.
- [21] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proc. of the National Academy of Sciences, Vol.1, No.101, pp. 5228-5235, 2004.
- [22] Y. Gao, H. Qi, J. Liu, and D. Y. Liu, “A Collaborative Filtering Recommendation Algorithm Combining Probabilistic Relational Models and User Grade,” J. of Computer Research and Development, Vol.9, No.45, pp. 1463-1469, 2008.
- [23] J. Huang, S. Rogers, and E. Joo, “Improving restaurants by extracting subtopics from yelp reviews,” iConference 2014 (Social Media Expo), 2014.
- [24] J. Linshi, “Personalizing Yelp Star Ratings: a Semantic Topic Modeling Approach,” Yale University, 2014.
- [25] D. A. V. Leeuwen and N. Brümmer, “Channel-dependent GMM and multi-class logistic: Regression models for language recognition,” 2006 IEEE Odyssey – The Speaker & Language Recognition Workshop, pp. 1-8, 2006.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.