JACIII Vol.23 No.2 pp. 209-218
doi: 10.20965/jaciii.2019.p0209


Energy-Aware Virtual Data Center Migration

Xiao Ma, Zhongbao Zhang, and Sen Su

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications
519 Research Building, 10 Xitucheng Road, Haidian District, Beijing 100876, China

July 27, 2018
December 25, 2018
March 20, 2019
virtual data center migration, energy-aware, energy consumption, ant colony optimization

Recently, the concept of virtual data center (VDC) has attracted significant attention from researchers. VDC is made up of virtual nodes and virtual links with guaranteed bandwidth. It offers elasticity and flexibility, which means VDC can adjust resources dynamically according to different requirements. Existing studies focus on how to design the optimal embedding algorithm to achieve high success rate for the virtual data center request. However, due to the resource of physical data center changes over time, the optimal solution may become sub-optimal. In this paper, we study the problem of virtual data center migration and propose an energy-aware virtual data center migration algorithm, called CA-VDCM-ACO. This novel algorithm leverages the migration technique to further reduce the energy consumption with the success rate for the physical data center guaranteed. The extensive experiments show that our algorithm is very effective to reduce the energy consumption.

Cite this article as:
X. Ma, Z. Zhang, and S. Su, “Energy-Aware Virtual Data Center Migration,” J. Adv. Comput. Intell. Intell. Inform., Vol.23 No.2, pp. 209-218, 2019.
Data files:
  1. [1] C. Guo, G. Lu, H. J. Wang et al., “SecondNet: a data center network virtualization architecture with bandwidth guarantees,” Proc. of Int. Conf. ACM, No.15, 2010.
  2. [2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards Predictable Datacenter Networks,” Proc. ACM SIGCOMM, 2011.
  3. [3] G. Cook and J. V. Horn, “How dirty is your data? A Look at the Energy Choices That Power Cloud Computing,” Greenpeace Int. Technical Report, April, 2011.
  4. [4] P. X. Gao, A. P. Curtis, B. Wong, and S. Keshav, “It’s not easy being green,” Proc. of the ACM SIGCOMM, 2012.
  5. [5] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: research problems in data center networks,” ACM SIGCOMM Computer Communication Review, Vol.39, No.1, pp. 68-73, 2008.
  6. [6] S. Su, Z. Zhang, A. X. Liu, X. Cheng, Y. Wang, and X. Zhao, “Energy-aware virtual network embedding,” IEEE/ACM Trans. on Networking, Vol.22, No.5, pp. 1607-1620, 2014.
  7. [7] Z. Zhang, S. Su, K. Shuang, W. Li, and M. Zia, “Energy aware virtual network migration,” IEEE GLOBECOM, pp. 1-6, 2016.
  8. [8] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol.26, No.1, pp. 29-41, 1996.
  9. [9] X. Ma, Z. Zhang, and S. Su, “Cost-Aware Multi-Domain Virtual Data Center Embedding,” China Communications, 2018 (accepted).
  10. [10] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford, “Virtual routers on the move: live router migration as a network-management primitive,” ACM SIGCOMM Computer Communication Review, Vol.38, No.4, pp. 231-242, 2008.
  11. [11] W. Cerroni and F. Callegati, “Live migration of virtual network functions in cloud-based edge networks,” IEEE Int. Conf. on Communications (ICC), pp. 2963-2968, 2014.
  12. [12] M. Pawlish, A. S. Varde, and S. A. Robila, “Analyzing utilization rates in data centers for optimizing energy management,” Int. Green Computing Conf. (IGCC), pp. 1-6, 2012.
  13. [13] R. Birke, L. Y. Chen, and E. Smirni, “Data centers in the wild: A large performance study,” IBM Technical Paper Research, 2012.
  14. [14] X. Sun, N. Ansari, and R. Wang, “Optimizing resource utilization of a data center,” IEEE Communications Surveys & Tutorials, Vol.18, No.4, pp. 2822-2846, 2016.
  15. [15] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scalable and fault-tolerant network structure for data centers,” Proc. of the ACM SIGCOMM 2008 Conf. on Data Communication, pp. 75-86, 2008.
  16. [16] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu, “Bcube: a high performance, server-centric network architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev., Vol.39, No.4, pp. 63-74, 2009.
  17. [17] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Proc. of the ACM SIGCOMM 2008 Conf. on Data Communication, pp. 63-74, 2008.
  18. [18] M. F. Bari, R. Boutaba, R. Esteves et al., “Data Center Network Virtualization: A Survey,” IEEE Communications Surveys & Tutorials, Vol.15, No.2, pp. 909-928, 2013.
  19. [19] A. Edwards, A. Fischer, and A. Lain, “Diverter: A New Approach to Networking Within Virtualized Infrastructures,” Proc. ACM Workshop on Research on Enterprise Networking, pp. 103-110, 2009.
  20. [20] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song, “Enhancing Dynamic Cloud-based Services using Network Virtualization,” Proc. ACM Workshop on Virtualized Infrastructure Systems and Architectures, pp. 37-44, 2009.
  21. [21] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “CloudNaaS: A Cloud Networking Platform for Enterprise Applications,” Proc. ACM Symp. on Cloud Computing, Article No.8, 2011.
  22. [22] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes, “Gate-keeper: Supporting Bandwidth Guarantees for Multi-tenant Datacenter Networks,” Proc. 3rd Workshop on I/O Virtualization, 2011.
  23. [23] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary, “NetLord: A Scalable Multi-Tenant Network Architecture for Virtualized Datacenters,” Proc. ACM SIGCOMM, pp. 62-73, 2011.
  24. [24] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible Data Center Network,” Proc. ACM SIGCOMM, pp. 51-62, 2009.
  25. [25] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric,” Proc. ACM SIGCOMM, pp. 39-50, 2009.
  26. [26] A. Shieh, S. Kandulaz, A. Greenberg, C. Kim, and B. Saha, “Sharing the Data Center Network,” Proc. 8th USENIX Conf. on Networked Systems Design and Implementation, pp. 309-322, 2011.
  27. [27] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese, “NetShare: Virtualizing Data Center Networks across Services,” Technical Report CS2010-0957, 2010.
  28. [28] M. F. Zhani, Q. Zhang, G. Simona, and R. Boutaba, “VDC Planner: Dynamic migration-aware Virtual Data Center embedding for clouds,” IFIP/IEEE Int. Symp. on Integrated Network Management, pp. 18-25, 2013.
  29. [29] Q. Zhang, M. F. Zhani, M. Jabri, and R. Boutaba, “Venice: Reliable virtual data center embedding in clouds,” IEEE INFOCOM, pp. 289-297, 2014.
  30. [30] Y. Han, J. Li, J.-Y. Chung et al., “SAVE: Energy-aware Virtual Data Center embedding and Traffic Engineering using SDN,” Proc. of the 2015 1st IEEE Conf. on Network Softwarization, pp. 1-9, 2015.
  31. [31] A. Amokrane, M. F. Zhani, R. Langar et al., “Greenhead: Virtual Data Center Embedding across Distributed Infrastructures,” IEEE Trans. on Cloud Computing, Vol.1, No.1, pp. 36-49, 2013.
  32. [32] R. V. Rosa, C. E. Rothenberg, and E. Madeira, “Virtual data center networks embedding through Software Defined Networking,” IEEE Network Operations and Management Symp., pp. 1-5, 2014.
  33. [33] G. Sun, S. Bu, V. Anand et al., “Reliable Virtual Data Center Embedding Across Multiple Data Centers,” Proc. of Int. Conf. on Internet of Things and Big Data, Vol.1, pp. 195-203, 2016.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 05, 2024