JACIII Vol.21 No.3 pp. 518-526
doi: 10.20965/jaciii.2017.p0518


Adaptive Fast Terminal Sliding Mode Control for a Class of Uncertain Systems with Input Nonlinearity

Linjie Xin*, Qinglin Wang*, Yuan Li*, and Jinhua She**

*School of Automation, Beijing Institute of Technology
Zhongguancun Street, Haidian District, Beijing 100081, China

**School of Engineering, Tokyo University of Technology
1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan

September 16, 2016
February 6, 2017
Online released:
May 19, 2017
May 20, 2017
adaptive control, terminal sliding mode control, input nonlinearity
This study investigates the terminal sliding mode (TSM) control for a class of first-order uncertain systems with dead-zone and saturation. First, a new adaptive TSM control law was proposed for the single-input and single-output (SISO) systems by employing an integral fast TSM. It achieves rejection for both system uncertainty and input nonlinearity. The global reaching condition of the sliding mode is guaranteed by the Lyapunov stability theory. The new control law possesses faster convergence than the linear sliding mode method, and the singularity problem of TSM is avoided. Then, the control law was extended for tracking control of a dynamic model of spacecraft which was a multi-input and multi-output (MIMO) system. Finally, the simulation results confirmed the effectiveness of the proposed control method.
Cite this article as:
L. Xin, Q. Wang, Y. Li, and J. She, “Adaptive Fast Terminal Sliding Mode Control for a Class of Uncertain Systems with Input Nonlinearity,” J. Adv. Comput. Intell. Intell. Inform., Vol.21 No.3, pp. 518-526, 2017.
Data files:
  1. [1] R. Garraoui, M. Ben Hamed, and L. Sbita, “A robust optimization technique based on first order sliding mode approach for photovoltaic power systems,” Int. J. Autom. Comput., Vol.12, pp. 620-629, 2015.
  2. [2] C. Cheng, R. Lai, Z. Chen, and X. D. Liu, “Adaptive nonsingular terminal sliding mode control of 6-DOF manipulator with modified switch function,” J. Adv. Comput. Intell. Intell. Inform., Vol.20, pp. 294-301, 2016.
  3. [3] A. AI-Ghanimi, J. C. Zheng, and Z. H. Man, “Robust and fast non-singular terminal sliding mode control for piezoelectric actuators,” IET Control Theory Appl., Vol.9, pp. 2678-2687, 2015.
  4. [4] D. Y. Zhao, S. Y. Li, and F. Gao, “A new terminal sliding mode control for robotic manipulators,” Int. J. Control, Vol.82, pp. 1804-1813, 2009.
  5. [5] Z. K. Song, H. X. Li, and K. B. Sun, “Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique,” ISA Trans., Vol.53, pp. 117-124, 2014.
  6. [6] H. Komurcugil, “Adaptive terminal sliding-mode control strategy for DC-DC buck converters,” ISA Trans., Vol.51, pp. 673-681, 2012.
  7. [7] H. Komurcugil, “Non-singular terminal sliding-mode control of DC-DC buck converters,” Control Eng. Pract., Vol.21, pp. 321-332, 2013.
  8. [8] X. H. Yu, Z. H. Man, and Y. Q. Wu, “Terminal sliding modes with fast transient performance,” Proc. 36th IEEE Conf. Decis. Control, pp. 962-963, 1997.
  9. [9] Y. Feng, X. H. Yu, and Z. H. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, Vol.38, pp. 2159-2167, 2002.
  10. [10] S. H. Yu, X. H. Yu, B. Shirinzadeh, and Z. H. Man, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automatica, Vol.41, pp. 1957-1964, 2005.
  11. [11] L. Liu, Q. M. Zhu, L. Cheng, Y. J. Wang, and D. Y. Zhao, “Applied methods and techniques for mechatronic systems: modelling, identi- fication and control,” Lect. Notes Control Inf. Sci., Vol.452, pp. 79-97, 2014.
  12. [12] M. B. R. Neila, D. Tarak, “Adaptive terminal sliding mode control for rigid robotic manipulators,” Int. J. Autom. Comput., Vol.8, pp. 215-220, 2011.
  13. [13] W. Q. Tang, Y. L. Cai, “High-order sliding mode control design based on adaptive terminal sliding mode,” Int. J. Robust Nonlinear Control, Vol.23, pp. 149-166, 2013.
  14. [14] L. Y. Fang, T. S. Li, Z. F. Li, and R. H. Li, “Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems,” Nonlinear Dyn., Vol.74, pp. 991-1002, 2013.
  15. [15] S. Mobayen, “Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method,” Nonlinear Dyn., Vol.80, Issue 1, pp. 669-683, 2015.
  16. [16] S. Mobayen, “Fast terminal sliding mode tracking of non-holonomic systems with exponential decay rate,” IET Control Theory Appl., Vol.9, No.8, pp. 1294-1301, 2015.
  17. [17] Y. J. Wu, J. M. Wang, et al., “Continuous recursive sliding mode control for hypersonic flight vehicle with extended disturbance observer,” Math. Probl. Eng., Article ID: 506906, 2015.
  18. [18] J. M. Wang, Y. J. Wu, and X. M. Dong, “Recursive terminal sliding mode control for hypersonic flight vehicle with sliding mode disturbance observer,” Nonlinear Dyn., Vol.81, pp. 1489-1510, 2015.
  19. [19] J. Yang, S. H. Li, J. Y. Su, and X. H. Yu, “Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances,” Automatica, Vol.49, pp. 2287-2291, 2013.
  20. [20] K. C. Hsu, “Variable structure control design for uncertain dynamic systems with sector nonlinearities,” Automatica, Vol.34, pp. 505-508, 1998.
  21. [21] K. C. Hsu, W. Y. Wang, and P. Z. Lin, “Sliding mode control for uncertain nonlinear systems with multiple inputs containing sector nonlinearities and dead-zones,” IEEE Trans. Systems, Man, and Cybernetics, Vol.34, pp. 374-380, 2004.
  22. [22] C. C. Yang, “Synchronization of second-order chaotic systems via adaptive terminal sliding mode control with input nonlinearity,” J. Franklin Inst., Vol.349, pp. 2019-2032, 2012.
  23. [23] C. C. Yang and C. J. Ou, “Adaptive terminal sliding mode control subject to input nonlinearity for synchronization of chaotic gyros,” Commun. Nonlinear Sci. Numer. Simul., Vol.18, pp. 682-691, 2013.
  24. [24] M. P. Aghababa and F. Z. Hassan, “Non-singular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs,” Chin. Phys. China, Vol.21, Article number: 060506, 2012.
  25. [25] Q. L. Hu, G. F. Ma, and L. H. Xie, “Robust and Adaptive variable structure output feedback control of uncertain systems with input nonlinearity,” Automatica, Vol.44, pp. 552-559, 2008.
  26. [26] M. Chen, Q. X. Wu, and R. X. Cui, “Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems,” ISA Trans., Vol.52, pp. 198-206, 2013.
  27. [27] S. H. Ding and W. X. Zheng, “Nonsingular terminal sliding mode control of nonlinear second-order systems with input saturation,” Int. J. Robust Nonlinear Control, Vol.26, pp. 1857-1872, 2016.
  28. [28] S. H. Ding, C. Zhang, and X. B. Li, “Terminal sliding mode control of second-order systems with bounded input,” 25th Chinese Control and Decision Conf. (CCDC), China, pp. 265-269, 2013.
  29. [29] H. K. Khalil, ”Nonlinear Systems,” 3rd ed., Prentice Hall, p. 218, 2002.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 19, 2024