Paper:
Incremental Loop Closure Verification by Guided Sampling
Tanaka Kanji
University of Fukui
3-9-1 Bunkyo, Fukui 910-8507, Japan
- [1] M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, and C. Schmid, “Evaluation of gist descriptors for web-scale image search,” Proc. ACM Int. Conf. Image and Video Retrieval, pp. 19:1-19:8, 2009.
- [2] H.-K. Tan and C.-W. Ngo, “Common pattern discovery using earth mover s distance and local flow maximization,” IEEE Int. Conf. Computer Vision (ICCV), pp. 1222-1229, 2005.
- [3] T. Zhou, Y. J. Lee, S. X. Yu, and A. A. Efros, “Flowweb: Joint image set alignment by weaving consistent, pixel-wise correspondences,” Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1191-1200, 2015.
- [4] G. Blanc, Y. Mezouar, and P. Martinet, “Indoor navigation of a wheeled mobile robot along visual routes,” Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation 2005 (ICRA 2005), pp. 3354-3359, 2005.
- [5] M. Cummins and P. M. Newman, “Appearance-only SLAM at large scale with FAB-MAP 2.0,” I. J. Robotic Res., Vol.30, No.9, pp. 1100-1123, 2011.
- [6] K. Pirker, M. Rüther, and H. Bischof, “CD SLAM – continuous localization and mapping in a dynamic world,” 2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2011), San Francisco, CA, USA, September 25-30, 2011, pp. 3990-3997, 2011.
- [7] D. Gálvez-López and J. D. Tardós, “Bags of binary words for fast place recognition in image sequences,” IEEE Trans. on Robotics, Vol.28, No.5, pp. 1188-1197, 2012.
- [8] K. Lebeda, J. Matas, and O. Chum, “Fixing the locally optimized RANSAC,” British Machine Vision Conf. (BMVC 2012), Surrey, UK, September 3-7, 2012, pp. 1-11, 2012.
- [9] N. Sunderhauf and P. Protzel, “Switchable constraints vs. max-mixture models vs. rrr-a comparison of three approaches to robust pose graph slam,” 2013 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 5198-5203, 2013.
- [10] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J. Frahm, “Usac: a universal framework for random sample consensus,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.35, No.8, pp. 2022-2038, 2013.
- [11] Y. Kanazawa and H. Kawakami, “Detection of planar regions with uncalibrated stereo using distributions of feature points,” British Machine Vision Conf., pp. 1-10, Citeseer, 2004.
- [12] C. Beall and F. Dellaert, “Appearance-based localization across seasons in a metric map,” 6th Workshop on Planning, Perception and Navigation for Intelligent Vehicles (PPNIV), Citeseer, 2014.
- [13] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruction in real-time,” 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 963-968, 2011.
- [14] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental smoothing and mapping,” IEEE Trans. on Robotics, Vol.24, No.6, pp. 1365-1378, 2008.
- [15] B. P. Williams, M. Cummins, J. Neira, P. M. Newman, I. D. Reid, and J. D. Tardós, “A comparison of loop closing techniques in monocular SLAM,” Robotics and Autonomous Systems, Vol.57, No.12, pp. 1188-1197, 2009.
- [16] B. P. Williams, M. Cummins, J. Neira, P. M. Newman, I. D. Reid, and J. D. Tardós, “An image-to-map loop closing method for monocular SLAM,” 2008 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, September 22-26, 2008, Acropolis Convention Center, Nice, France, pp. 2053-2059, 2008.
- [17] G. Klein and D. W. Murray, “Improving the agility of keyframe-based SLAM,” Computer Vision – ECCV 2008, 10th European Conf. on Computer Vision, Marseille, France, October 12-18, 2008, Proc., Part II, pp. 802-815, 2008.
- [18] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel, “1-point ransac for ekf-based structure from motion,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 2009 (IROS 2009), pp. 3498-3504, 2009.
- [19] B. P. Williams, G. Klein, and I. Reid, “Automatic relocalization and loop closing for real-time monocular SLAM,” IEEE Trans. Pattern Anal. Mach. Intell., Vol.33, No.9, pp. 1699-1712, 2011.
- [20] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao, “Robust monocular SLAM in dynamic environments,” IEEE Int. Symposium on Mixed and Augmented Reality (ISMAR 2013), Adelaide, Australia, October 1-4, 2013, pp. 209-218, 2013.
- [21] H. Johannsson, M. Kaess, M. F. Fallon, and J. J. Leonard, “Temporally scalable visual SLAM using a reduced pose graph,” 2013 IEEE Int. Conf. on Robotics and Automation, Karlsruhe, Germany, May 6-10, 2013, pp. 54-61, 2013.
- [22] B. Tordoff and D. W. Murray, “Guided sampling and consensus for motion estimation,” European Conf. on Computer Vision, pp. 82-96, Springer, 2002.
- [23] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige, “Double window optimisation for constant time visual SLAM,” IEEE Int. Conf. on Computer Vision (ICCV 2011), Barcelona, Spain, November 6-13, 2011, pp. 2352-2359, 2011.
- [24] Y. Li, N. Snavely, and D. P. Huttenlocher, “Location recognition using prioritized feature matching,” European Conf. on Computer Vision, pp. 791-804, Springer, 2010.
- [25] R. Raguram, J. Tighe, and J.-M. Frahm, “Improved geometric verification for large scale landmark image collections,” British Machine Vision Conf., pp. 1-11, 2012.
- [26] G. H. Lee and M. Pollefeys, “Unsupervised learning of threshold for geometric verification in visual-based loop-closure,” 2014 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1510-1516, 2014.
- [27] K. Tanaka, “Cross-season place recognition using nbnn scene descriptor,” 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2015.
- [28] K. Tanaka, “nsupervised part-based scene modeling for visual robot localization,” Proc. of the 2015 IEEE Int. Conf. on Robotics and Automation 2015 (ICRA 2015), pp. 6359-6365, 2015.
- [29] M. Ando, Y. Chokushi, K. Tanaka, and K. Yanagihara, “Leveraging image-based prior in cross-season place recognition,” Proc. of the 2015 IEEE Int. Conf. on Robotics and Automation, 2015 (ICRA 2015), pp. 5455-5461, 2015.
- [30] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based slam,” IEEE Intelligent Trans. Systems Magazine, Vol.2, No.4, pp. 31-43, 2010.
- [31] M. Brubaker, A. Geiger, R. Urtasun et al., “Lost! leveraging the crowd for probabilistic visual self-localization,” 2013 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 3057-3064, 2013.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.