Paper:
Detecting Ellipses in Embryo Images Using Arc Detection Method with Particle Swarm for Blastomere-Quality Measurement System
Aprinaldi Jasa Mantau*, Anom Bowolaksono**, Budi Wiweko***, and Wisnu Jatmiko*
*Faculty of Computer Science, Universitas Indonesia
Depok, Jawa Barat, Indonesia
**Faculty of Mathematics and Natural Science, Universitas Indonesia
Depok, Jawa Barat, Indonesia
***Faculty of Medicine, Universitas Indonesia
Jakarta, Indonesia
- [1] T. Baczkowski, R Kurzawa, and W. Glabowski, “Methods of embryo scoring in in vitro fertilization,” Reproductive biology, Vol.4, No.1, pp. 3-22, 2004.
- [2] E. S. Filho, “A Review on Automatic Analysis of Human Embryo Microscope Images,” The Open Biomedical Engineering J., No.4, pp. 170-177, 2010.
- [3] L. A. Scott and S. Smith, “The successful use of pronuclear embryo transfers the day following oocyte retrieval,” Hum. Reprod, Vol.13, No.4, pp. 1003-1013, 1998.
- [4] D. A. Moralesa, et al., “Bayesian classification for the selection of in vitro human embryos using morphological and clinical data,” Computer Methods and Programs in Biomedicine, Vol.90, No.2, pp. 104-116, 2007.
- [5] C. Manna, L. Nanni, A. Lumini, S. Pappalardo, “Artificial intelligence techniques for embryo and oocyte classification,” Reproductive Biomedicine Online, Vol.26, No.1, pp. 42-49, 2013.
- [6] C. Manna, G. Patrizi, A. Rahman, H. Sallam, “Experimental results on the recognition of embryos in human assisted reproduction,” Reproductive Biomedicine Online, Vol.8, No.4, pp. 460-469, 2004.
- [7] W. Lu and J. Tan, “Detection of incomplete ellipse in images with strong noise by iterative randomized Hough transform (IRHT),” Pattern Recognition, Vol.41, pp. 1268-1279, 2008.
- [8] H. D. Cheng, Y. Guo, and Y. Zhang, “A novel Hough transform based on eliminating particle swarm optimization and its applications,” Pattern Recognition, Vol.42, pp. 1959-1969, 2009.
- [9] I. P. Satwika, I. Habibie, M. A. Ma’sum, A. Febrian, and E. Budianto, “Particle swarm optimation based 2-dimensional randomized hough transform for fetal head biometry detection and approximation in ultrasound imaging,” Advanced Computer Science and Information Systems (ICACSIS), 2014 Int. Conf. on, pp. 468-473, 18-19 Oct. 2014.
- [10] Cuneyt Akinlar and Cihan Topal, “EDCircles: A real-time circle detector with a false detection control,” Pattern Recognition, Vol.46, pp. 725-740, 2012.
- [11] J. Van Blerkom, H. Bell, and D. Weipz, “Cellular and developmental biological aspects of bovine meiotic maturation, fertilization, and preimplantation embryogenesis in vitro,” J. of electron microscopy technique, Vol.16, No.4, pp. 298-323, 1990.
- [12] L. Scott, et al., “The morphology of human pronuclear embryos is positively related to blastocyst development and implantation,” Human Reproduction, Vol.15, No.11, pp. 2394-2403, 2000.
- [13] L. Xu, E. Oja, and P. Kultanen, “A net Cure detection method: Randomized hough transform (RHT),” Patern Regognition Letters, Vol.11, No.5, pp. 331-339, 1990.
- [14] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” Proc. of IEEE Int. Conf. on Neural Network, 1995.
- [15] J. Kennedy, R. C. Eberhart, and M. Kaufman, “Swarm Intelligence,” Morgan Kaufman, San Fransisco, 2001.
- [16] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” Proc. of IEEE Int. Conf. on Neural Network, Vol.4, pp. 1942-1948, 1995.
- [17] W. Jatmiko, Rochmatullah, B. Kusumoputro, K. Sekiyama, and T. Fukuda, “Fuzzy learning vector quantization based on particle swarm optimization for artificial odor dicrimination system,” WSEAS Trans. on Systems, Vol.8, No.12, pp. 1239-1252, 2009.
- [18] W. Jatmiko, A. Nugraha, R. Effendi, W. Pambuko, R. Mardian, K. Sekiyama, and T. Fukuda, “Localizing Multiple odor Sources in a dynamic environment based on Modified niche Particle Swarm Optimization with flow of wind,” WSEAS Trans. on Systems, Vol.8, No.11, pp. 1187-1196, 2009.
- [19] W. Jatmiko, K. Sekiyama, and T. Fukuda, “A particle swarm-based mobile sensor network for odor source localization in a dynamic environment,” Distributed Autonomous Robotic Systems, Vol.7, pp. 71-80, 2006.
- [20] Aprinaldi, G. Jati, A. A. S. Gunawan, A. Bowolaksono, S. W. Lestari, and W. Jatmiko, “Human Sperm tracking using Particle Swarm Optimization combined with Smoothing Stochastic sampling on low frame rate video,” 2015 Int. Symposium on Micro-NanoMechatronics and Human Science (MHS), 2015.
- [21] C. Akinlar and C. Topal, “EDPF: A Real-time Parameter-free Edge Segment Detector with a False Detection Control,” Int. J. of Pattern Recognition and Artificial Intelligence, Vol.26, No.1, 2012.
- [22] R. G. von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall, “LSD: A Fast Line Segment Detector with a False Detection Control,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.32, No.4, pp. 722-732, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.