Paper:
An Improved TL Buck Converter for Fast-Charging Energy Storage System Using UCs
Bin Chen, Zhiwu Huang†, Rui Zhang, Heng Li, and Zhihui Wu
School of Information Science and Engineering, Central South University
Changsha, Huan 410075, China
†Corresponding author
- [1] J. Liu, C. Luo, and H. Jiang, “A non-dissipative controllable charging equalizer for series connected high-capacity super-capacitors urban rail transport system,” IEEE on Energy Conversion Congress and Exposition, 2014.
- [2] F. Ciccarelli, “Energy management and control strategies for the use of supercapacitors storage technologies in urban railway traction systems,” Nature Communications, Vol.5, No.676, pp. 1842-1862, 2014.
- [3] H. Xia, Z. Yang, and F. Lin, “Modeling and state of charge-based energy management strategy of UC energy storage system of urban rail transit,” IEEE Conf. on Industrial Electronics Society, 2015.
- [4] M. B. Camara, H. Gualous, and F. Gustin, “DC/DC Converter Design for Supercapacitor and Battery Power Management in Hybrid Vehicle Applications–Polynomial Control Strategy,” IEEE Trans. on Industrial Electronics, Vol.57, No.2, pp. 587-597, 2010.
- [5] M. Ortúzar, J. Moreno, and J. Dixon, “UC-based auxiliary energy system for an electric vehicle: Implementation and evaluation,” IEEE Trans. on Industrial Electronics, Vol.54, No.4, pp. 2147-2156, 2007.
- [6] C. Townsend, “Heuristic Model Predictive Modulation for High-Power Cascaded Multi-Level Converters,” IEEE Trans. on Industrial Electronics, p. 1, 2016.
- [7] V. Yousefzadeh, E. Alarc, and D. Maksimovic, “TL buck converter for envelope tracking applications,” IEEE Trans. on Industrial Electronics, Vol.21, No.2, pp. 549-552, 2006.
- [8] S. Dusmez, X. Li, and B. Akin, “A New Multiinput TL DC/DC Converter,” IEEE Trans. on Power Electronics, Vol.31, No.2, pp. 1230-1240, 2016.
- [9] P. J. Grbovic, “High-voltage auxiliary power supply using seriesconnected MOSFETs and floating self-driving technique,” IEEE Trans. on Power Electronics, Vol.56, No.5, pp. 1446-1455, 2009.
- [10] L. Xu and V. G. Agelidis, “Active capacitor voltage control of flying capacitor multileve converters,” IEEE Proc. Electric Power Appications, Vol.51, No.3, pp. 313-320, 2012.
- [11] P. J Grbovic, P. Delarue, and P. L Moigne, “A Bidirectional TL DC-DC Converter for the UC Applications,” IEEE Trans. on Industrial Electronics, Vol.57, No.10, pp. 3415-3430, 2010.
- [12] D. Vinnikov, I. Roasto, and J. Zakis, “New bi-directional DC/DC converter for supercapacitor interfacing in high-power applications,” IEEE Conf. on Power Electronics and Motion Control, pp. 38-43, 2010.
- [13] L. Shi, B. P. Baddipadiga, and M. Ferdowsi, “Improving the dynamic response of a flying-capacitor TL buck converter,” IEEE Trans. on Power Electronics, Vol.28, No.5, pp. 2356-2365, 2013.
- [14] M. Hong and L. B. Yao, “Inductor current sharing of current doubler rectifier in isolated DC-DC converters,” Applied Power Electronics Conf. and Exposition, pp. 770-775, 2006.
- [15] T. Song, H. Chung, and A. Ioinovici, “A high-voltage dc-dc converter with vin/3 voltage stress on the primary switches,” IEEE Trans. on Power Electronics, Vol.26, No.2, pp. 2124-2137, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.