JACIII Vol.20 No.5 pp. 765-772
doi: 10.20965/jaciii.2016.p0765


A System for the Comprehensive Quantification of Real-Time Heartbeat Activity

Wanhui Wen, Jian Zeng, Guohui Hu, and Guangyuan Liu

School of Electronic and Information Engineering, Southwest China University
Beibei, Chongqing 400715, China

Corresponding author

August 1, 2015
June 17, 2016
September 20, 2016
heart rate, physiological arousal, local Hurst exponent, relative fluctuation
Heartbeat can reflect the dynamics of the heart control system, and it is also a commonly used index in health monitoring, exercise load calculation and psycho-physiological arousal quantification. This paper fuses three heartbeat measures, i.e. the running mean, the range of local Hurst exponents and the relative fluctuation, to construct a system that can automatically quantify the heartbeat activity both from its static aspect and from its dynamic aspect in a real-time manner. Experiments show that the system can reveal the heartbeat arousal difference between physically relaxed status and exercise-loaded status. When the affective heartbeat data in literature are quantified by this system, the results also show the capability of the system to illustrate psycho-physiological arousal.
Cite this article as:
W. Wen, J. Zeng, G. Hu, and G. Liu, “A System for the Comprehensive Quantification of Real-Time Heartbeat Activity,” J. Adv. Comput. Intell. Intell. Inform., Vol.20 No.5, pp. 765-772, 2016.
Data files:
  1. [1] H. E. Stanley, L. A. N. Amaral, A. L. Goldberger, S. Havlin, P. C. Ivanov, and C. K. Peng, “Statistical Physics and physiology: monofractal and multifractal approaches,” Physica A, Vol.270, pp. 309-324, 1999.
  2. [2] B. J. West, R. Zhang, A. W. Sanders, S. Miniyar, J. H. Zuckerman, B. D. Levine, “Fractal fluctuations in cardiac time series,” Physica A, Vol.270, pp. 552-566, 1999.
  3. [3] P. C. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, and H. E. Stanley, “Multifractality in human heartbeat dynamics,” Nature, Vol.399, pp. 461-465, 1999.
  4. [4] L. A. N. Amaral, P. C. Ivanov, N. Aoyagi, I. Hidaka, S. Tomono, A. L. Goldberger, and Y. Yamamoto, “Behavioral-independence features of complex heartbeat dynamics,” Physical Review Letters, Vol.86, pp. 6026-6029, 2001.
  5. [5] J. Ksela, V. Avbelj, and J. M. Kalisnik, “Multifractality in heartbeat dynamics in patients undergoing beating-heart myocardial revascularization,” Computers in Biology and Medicine, Vol.60, pp. 66-73, 2015.
  6. [6] L. E. V. Silva, B. C. T. Cabella, U. P. C. Neves, and L. O. M. Junior, “Multiscale entropy-based methods for heart rate variability complexity analysis,” Physica A, Vol.422, pp. 143-152, 2015.
  7. [7] S. Havlin, L. A. N. Amaral, Y. Ashkenazy, A. L. Goldberger, P. C. Ivanov, C. K. Peng, H. E. Stanley, “Application of statistical physics to heartbeat diagnosis,” Physica A, Vol.274, pp. 99-110, 1999.
  8. [8] A. Kushki, A. Khan, J. Brian, and E. Anagnostou, “A Kalman filtering framework for physiological detection of anxiety-related arousal in children with autism spectrum disorder,” IEEE Trans. on Biomedical Engineering, Vol.62, No.3, pp. 990-1000, 2015.
  9. [9] M. A. Sanchez-Gonzalez, P. Guzik, R. W. May, A. P. Koutnik, R. Hughes, S. Muniz, M. Kabbaj, and F. D. Fincham, “Trait anxiety mimics age-related cardiovascular autonomic modulation in young adults,” J. of Human Hypertension, Vol.29, pp. 274-280, 2015.
  10. [10] D. Giakoumis, D. Tzovaras, K. Moustakas, and G. hassapis, “Automatic recognition of boredom in video games using novel biosignal moment-based features,” IEEE Trans. on Affective Computing, Vol.2, No.3, pp. 119-133, 2011.
  11. [11] F. Agrafioti, D. hatzinakos, and A. K. Anderson, “ECG pattern analysis for emotion detection,” IEEE Trans. on Affective Computing, Vol.3, No.1, pp. 102-115, 2012.
  12. [12] M. D. Costa, W. T. Schnettler, C. Amorim-Costa, J. Bernardes, A. Costa, A. L. Goldberger, and D. Ayres-de-Campos, “Complexity-loss in fetal heart rate dynamics during labor as a potential biomarker of acidemia,” Early Humman Development, Vol.90, pp. 67-71, 2014.
  13. [13] M. G. Sun, L. E. Burke, T. Baranowski, F. D. Fernstrom, and H. Zhang, “An exploratory study on a chest-worn computer for evaluation of diet, physical activity and lifestyle,” J. of Healthcare Engineering, Vol.6, No.1, pp. 1-22, 2015.
  14. [14] S. D. Kreibig, “Autonomic nervous system activity in emotion: a review,” Biological Psychology, Vol.84, pp. 394-421, 2010.
  15. [15] Z. H. Zhu, T. Liu, G. Y. Li, T. Li, and Y. Inoue, “Wearable Sensor Systems for Infants,” Sensors, Vol.15, No.2, pp. 3721-3749, 2015.
  16. [16] W. Wen, G. Liu, N. Cheng, J. Wei, P. Shangguan, and W. Huang, “Emotion recognition based on multi-variant correlation of physiological signals,” IEEE Trans. on Affective Computing, Vol.5, No.2, pp. 126-140, 2014.
  17. [17] E. Molino-Minero-Re, F. Garcia-Nocetti, and H. Benitez-Perez, “Application of a time-scale local Hurst exponent analysis to time series,” Digital Signal Processing, Vol.37, pp. 92-99, 2015.
  18. [18] Y. Chida and M. Hamer, “Chronic psychosocial factors and acute physiological responses to laboratory-induced stress in healthy populations: a quantitative review of 30 years of investigations,” Psychological Bulletin, Vol.134, No.6, pp. 829-885, 2008.
  19. [19] E. S. Epel, J. Lin, F. H. Wilhelm, O. M. Wolkowitz, R. Cawthon, N. E. Adler, C. Dolbier, W. B. Mendes, and E. H. Blackburn, “Cell aging in relation to stress arousal and cardiovascular disease risk factors,” Psychoneuroendocrinology, Vol.31, pp. 277-287, 2006.
  20. [20] J. G. Shalom, H. Israeli, O. Markovitzky, and J. D. Lipsitz, “Social anxiety and physiological arousal during computer mediated vs. face to face communication,” Computers in Human Behavior, Vol.44, pp. 202-208, 2015.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 05, 2024