single-jc.php

JACIII Vol.20 No.5 pp. 765-772
doi: 10.20965/jaciii.2016.p0765
(2016)

Paper:

A System for the Comprehensive Quantification of Real-Time Heartbeat Activity

Wanhui Wen, Jian Zeng, Guohui Hu, and Guangyuan Liu

School of Electronic and Information Engineering, Southwest China University
Beibei, Chongqing 400715, China

Corresponding author

Received:
August 1, 2015
Accepted:
June 17, 2016
Online released:
September 20, 2016
Published:
September 20, 2016
Keywords:
heart rate, physiological arousal, local Hurst exponent, relative fluctuation
Abstract

Heartbeat can reflect the dynamics of the heart control system, and it is also a commonly used index in health monitoring, exercise load calculation and psycho-physiological arousal quantification. This paper fuses three heartbeat measures, i.e. the running mean, the range of local Hurst exponents and the relative fluctuation, to construct a system that can automatically quantify the heartbeat activity both from its static aspect and from its dynamic aspect in a real-time manner. Experiments show that the system can reveal the heartbeat arousal difference between physically relaxed status and exercise-loaded status. When the affective heartbeat data in literature are quantified by this system, the results also show the capability of the system to illustrate psycho-physiological arousal.

References
  1. [1] H. E. Stanley, L. A. N. Amaral, A. L. Goldberger, S. Havlin, P. C. Ivanov, and C. K. Peng, “Statistical Physics and physiology: monofractal and multifractal approaches,” Physica A, Vol.270, pp. 309-324, 1999.
  2. [2] B. J. West, R. Zhang, A. W. Sanders, S. Miniyar, J. H. Zuckerman, B. D. Levine, “Fractal fluctuations in cardiac time series,” Physica A, Vol.270, pp. 552-566, 1999.
  3. [3] P. C. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, and H. E. Stanley, “Multifractality in human heartbeat dynamics,” Nature, Vol.399, pp. 461-465, 1999.
  4. [4] L. A. N. Amaral, P. C. Ivanov, N. Aoyagi, I. Hidaka, S. Tomono, A. L. Goldberger, and Y. Yamamoto, “Behavioral-independence features of complex heartbeat dynamics,” Physical Review Letters, Vol.86, pp. 6026-6029, 2001.
  5. [5] J. Ksela, V. Avbelj, and J. M. Kalisnik, “Multifractality in heartbeat dynamics in patients undergoing beating-heart myocardial revascularization,” Computers in Biology and Medicine, Vol.60, pp. 66-73, 2015.
  6. [6] L. E. V. Silva, B. C. T. Cabella, U. P. C. Neves, and L. O. M. Junior, “Multiscale entropy-based methods for heart rate variability complexity analysis,” Physica A, Vol.422, pp. 143-152, 2015.
  7. [7] S. Havlin, L. A. N. Amaral, Y. Ashkenazy, A. L. Goldberger, P. C. Ivanov, C. K. Peng, H. E. Stanley, “Application of statistical physics to heartbeat diagnosis,” Physica A, Vol.274, pp. 99-110, 1999.
  8. [8] A. Kushki, A. Khan, J. Brian, and E. Anagnostou, “A Kalman filtering framework for physiological detection of anxiety-related arousal in children with autism spectrum disorder,” IEEE Trans. on Biomedical Engineering, Vol.62, No.3, pp. 990-1000, 2015.
  9. [9] M. A. Sanchez-Gonzalez, P. Guzik, R. W. May, A. P. Koutnik, R. Hughes, S. Muniz, M. Kabbaj, and F. D. Fincham, “Trait anxiety mimics age-related cardiovascular autonomic modulation in young adults,” J. of Human Hypertension, Vol.29, pp. 274-280, 2015.
  10. [10] D. Giakoumis, D. Tzovaras, K. Moustakas, and G. hassapis, “Automatic recognition of boredom in video games using novel biosignal moment-based features,” IEEE Trans. on Affective Computing, Vol.2, No.3, pp. 119-133, 2011.
  11. [11] F. Agrafioti, D. hatzinakos, and A. K. Anderson, “ECG pattern analysis for emotion detection,” IEEE Trans. on Affective Computing, Vol.3, No.1, pp. 102-115, 2012.
  12. [12] M. D. Costa, W. T. Schnettler, C. Amorim-Costa, J. Bernardes, A. Costa, A. L. Goldberger, and D. Ayres-de-Campos, “Complexity-loss in fetal heart rate dynamics during labor as a potential biomarker of acidemia,” Early Humman Development, Vol.90, pp. 67-71, 2014.
  13. [13] M. G. Sun, L. E. Burke, T. Baranowski, F. D. Fernstrom, and H. Zhang, “An exploratory study on a chest-worn computer for evaluation of diet, physical activity and lifestyle,” J. of Healthcare Engineering, Vol.6, No.1, pp. 1-22, 2015.
  14. [14] S. D. Kreibig, “Autonomic nervous system activity in emotion: a review,” Biological Psychology, Vol.84, pp. 394-421, 2010.
  15. [15] Z. H. Zhu, T. Liu, G. Y. Li, T. Li, and Y. Inoue, “Wearable Sensor Systems for Infants,” Sensors, Vol.15, No.2, pp. 3721-3749, 2015.
  16. [16] W. Wen, G. Liu, N. Cheng, J. Wei, P. Shangguan, and W. Huang, “Emotion recognition based on multi-variant correlation of physiological signals,” IEEE Trans. on Affective Computing, Vol.5, No.2, pp. 126-140, 2014.
  17. [17] E. Molino-Minero-Re, F. Garcia-Nocetti, and H. Benitez-Perez, “Application of a time-scale local Hurst exponent analysis to time series,” Digital Signal Processing, Vol.37, pp. 92-99, 2015.
  18. [18] Y. Chida and M. Hamer, “Chronic psychosocial factors and acute physiological responses to laboratory-induced stress in healthy populations: a quantitative review of 30 years of investigations,” Psychological Bulletin, Vol.134, No.6, pp. 829-885, 2008.
  19. [19] E. S. Epel, J. Lin, F. H. Wilhelm, O. M. Wolkowitz, R. Cawthon, N. E. Adler, C. Dolbier, W. B. Mendes, and E. H. Blackburn, “Cell aging in relation to stress arousal and cardiovascular disease risk factors,” Psychoneuroendocrinology, Vol.31, pp. 277-287, 2006.
  20. [20] J. G. Shalom, H. Israeli, O. Markovitzky, and J. D. Lipsitz, “Social anxiety and physiological arousal during computer mediated vs. face to face communication,” Computers in Human Behavior, Vol.44, pp. 202-208, 2015.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Mar. 24, 2017