JACIII Vol.19 No.6 pp. 778-784
doi: 10.20965/jaciii.2015.p0778


A Comparison of Ligament Tensions Between Intra- and Extra-Articular Measurement in Anterior Cruciate Ligament Reconstruction

Shogo Kawaguchi*, Kouki Nagamune*,**, Yuichiro Nishizawa**, Shinya Oka**, Daisuke Araki**, Yuichi Hoshino**, Takehiko Matsushita**, Ryosuke Kuroda**, and Masahiro Kurosaka**

*Graduate School of Engineering, University of Fukui
3-9-1 Bunkyo, Fukui-shi, Fukui 910-0017, Japan

**Graduate School of Medicine, Kobe University
7-5-1 Kusunikicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan

March 25, 2015
August 18, 2015
November 20, 2015
anterior cruciate ligament (ACL), intra-articular graft tension, bone tunnel
Anterior cruciate ligament (ACL) reconstruction is one of the treatments of ACL injuries. In the surgery, the reconstructed ligament should be properly tensioned to provide a normal ligament behavior. However, the ligament tension has been measured with an extra-articular technique in past studies, while the intra-articular ligament tension is still unknown. The purpose of this study is to compare the ligament tensions between intra- and extra-articular measurements in the ACL reconstruction. Intra-articular measurement employs a micro-force sensor designed with a width and thickness same as those of the reconstructed ligament. This study performed two experiments (i.e., sensor accuracy and cadaveric study). In the sensor accuracy experiment, the accuracy of the sensor was about 3% until an applied force of 100 N. In the cadaveric study, the results of the intra- and extra-articular measurement tensions were 13.6±3.9 N and 18.7±1.3 N (n = 6), respectively. The significant difference in student t-test (p-value was 0.026) between the intra- and extra- articular measurements was observed. The bending angle and friction between the graft and bone tunnel, and the shape of the intra-articular edge of tibial bone tunnel affected the intra-articular measurement in ACL reconstruction.
Cite this article as:
S. Kawaguchi, K. Nagamune, Y. Nishizawa, S. Oka, D. Araki, Y. Hoshino, T. Matsushita, R. Kuroda, and M. Kurosaka, “A Comparison of Ligament Tensions Between Intra- and Extra-Articular Measurement in Anterior Cruciate Ligament Reconstruction,” J. Adv. Comput. Intell. Intell. Inform., Vol.19 No.6, pp. 778-784, 2015.
Data files:
  1. [1] J. A. Feagin Jr. and M. J. Dohrmann, “The Crucial ligaments: diagnosis and treatment of ligamentous injuries about the knee,” pp. 3-28, Churchill Livingstone, 1994.
  2. [2] C. H. Chen, T. Y. Chuang, K. C. Wang, W. J. Chen, and C. H. Shih, “Arthroscopic anterior cruciate ligament reconstruction with quadriceps tendon autograft: clinical outcome in 47 years,” Knee Surg Sports Traumatol Arthrosc, Vol.14, pp. 1077-1085, 2006.
  3. [3] A. Maeda, K. Shino, S. Horibe, K. Nakata, and G. Buccafusca, “Anterior cruciate ligament reconstruction with multistranded autogenous semitendinosus tendon,” Am J Sports Med, Vol.24, pp. 504-509, 1996.
  4. [4] T. Mae, K. Shino, T. Miyama, H. Shinjo, T. Ochi, H. Yoshikawa, and H. Fujie, “Single-versus two-femoral socket anterior cruciate ligament reconstruction technique: Biomechanical analysis using a robotic simulator,” Arthroscopy, Vol.17, pp. 708-716, 2001.
  5. [5] M. Yagi, E. K. Wong, A. Kanamori, R. E. Debski, F. H. Fu, and S. L. Woo, “Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction,” Am J Sports Med, Vol.30, pp. 660-666, 2002.
  6. [6] I. Iwahashi, K. Shino, K. Nakata, H. Otsubo, T. Suzuki, H. Amano, and N. Nakamura, “Direct Anterior Cruciate Ligament Insertion to the Femur Assessed by Histology and 3-Dimensional Volume-Rendered Computed Tomography,” Vol.26, No.9, pp. S13-20, 2010.
  7. [7] N. Adachi, M. Ochi, Y. Uchio, J. Iwasa, M. Kuriwaka, and Y. Ito, “Reconstruction of the anterior cruciate ligament single- versus double-bundle multistranded hamstring tendons,” J Bone Joint Surg, Vol.86, pp. 515-20, 2004.
  8. [8] A. van Kampen, A. B. Wymenga, H. J. L. van der Heide, and H. J. A. M. Bakens, “The effect of different graft tensioning in anterior cruciate ligament reconstruction: A prospective randomized study,” Arthroscopy, Vol.14, pp. 845-850, 1998.
  9. [9] T. H. Gertel, W. D. Lew, J. L. Lewis, N. J. Stewart, and R. E. Hunter, “Effect of anterior cruciate ligament graft tensioning direction, magnitude, and flexion angle on knee biomechanics,” Am J Sports Med, Vol.21, pp. 572-581, 1993.
  10. [10] S. Yoshiya, M. Kurosaka, K. Ouchi, R. Kuroda, and K. Mizuno, “Graft tension and knee stability after anterior cruciate ligament reconstruction,” Clin Orthop Relat Res, pp. 154-160, 2002.
  11. [11] E. D. Nabors, J. C. Richmond, W. M. Vannah, and O. R. McConville, “Anterior cruciate ligament graft tensioning in full extension,” Am J Sports Med, Vol.23, pp. 488-492, 1995.
  12. [12] S. Yoshiya, J. T. Andrich, M. T. Mainley, and T. W. Bauer TW, “Graft tension in anterior cruciate ligament reconstruction: An in vivo study in dogs,” Am J Sports Med, Vol.15, pp. 464-470, 1987.
  13. [13] S. L. Woo, J. M. Hollis, R. D. Roux, M. A. Gomez, M. Inoue, J. B. Kleiner, and W. H. Akeson, “Effects of knee flexion on the structural properties of the rabbit femur-anterior cruciate ligament-tibia complex (FATC),” J Biomech, Vol.20, pp. 557-563, 1987.
  14. [14] K. Labs, C. Perka, and F. Schneider, “The biological and biomechanical effect of different graft tensioning in anterior cruciate ligament reconstruction: an experimental study,” Arch Orthop Trauma Surg, Vol.122, pp. 193-199, 2002.
  15. [15] T. Mae, K. Shino, N. Matsumoto, K. Nakata, K. Kinugasa, H. Yoshikawa, M. Yoneda, “In Vivo graft tension in anatomic double-bundle anterior cruciate ligament reconstruction during active leg-raising motion with the knee splinted,” Arthroscopy, Vol.28, No.4, pp. 532-538, 2012.
  16. [16] T, Mae, K. Shino, N. Matsumoto, A. Maeda, K. Nakata, and M. Yoneda, “Graft tension during active knee extension exercise in anatomic double-bundle anterior cruciate ligament reconstruction,” Arthroscopy, Vol.26, No.2, pp. 214-222, 2010.
  17. [17] Y. Hoshino, R. Kuroda, K. Nagamune, K. Nishimoto, M. Yagi, K. Mizuno, S. Yoshiya, and M. Kurosaka, “The effect of graft tensioning in anatomic 2-bundle ACL reconstruction on knee joint kinematics,” Knee Surg Sports Traumatol Arthrosc, Vol.15, pp. 508-514, 2007.
  18. [18] K. Yasuda, H. Ichiyama, E. Kondo, S. Miyatake, M. Inoue, and Y. Tanabe, “An in vivo biomechanical study on the tension-versus-knee flexion angle curves of 2 grafts in anatomic double-bundle anterior cruciate ligament reconstruction: effects of initial tension and internal tibial rotation,” Arthroscopy, Vol.24, pp. 276-284, 2008.
  19. [19] T. Mae, K. Shino, N. Matsumoto, K. Nakata, N. Nakamura, and T. Iwahashi, “Force sharing between two grafts in the anatomical two-bundle anterior cruciate ligament reconstruction,” Knee Surg Sports Traumatol Arthrosc, Vol.14, pp. 505-509, 2006.
  20. [20] D. M. Thompson, M. L. Hull, and S. M. Howell, “Does a Tensioning Device Pinned to the Tibia Improve Knee Anterior Posterior Load-Displacement Compared to Manual Tensioning of the Graft following Anterior Cruciate Ligament Reconstruction? A Cadaveric Study of Two Tibial Fixation Devices,” Vol.24, pp. 1832-1841, 2006.
  21. [21] T. Mae, K. Shino, N. Matsumoto, M. Hamada, M. Yoneda, and K. Nakata, “Anatomical two-bundle versus Rosenbergs isometric bi-socket ACL reconstruction: a biomechanical comparison in laxity match pretension,” Knee Surg Sports Traumatol Arthrosc, Vol.15, pp. 328-334, 2007.
  22. [22] M. F. Brady, M. P. Bradley, B. C. Fleming, P. D. Fadale, M. J. Hulstyn, and R. Banerjee, “Effects of Initial Graft Tension on the Tibiofemoral Compressive Forces and Joint Position Following ACL Reconstruction,” Knee Surg Sports Traumatol Arthrosc, Vol.35, pp. 395-403, 2007.
  23. [23] J. Suggs, C. Wang, and G. Li, “The effect of graft stiffness on knee joint biomechanics after ACL reconstruction–-3D computational simulation,” Clinical Biomechanics, Vol.18, pp. 35-43, 2003.
  24. [24] H. Y. Kim, Y. J. Seo, H. J. Kim, T. Nguyenn, N. S. Shetty, and Y. S. Yoo, “Tension Changes Within the Bundles of Anatomic Double-Bundle Anterior Cruciate Ligament Reconstruction at Different Knee Flexion Angles: A Study Using a 3-Dimensional Finite Element Model,” Arthroscopy, Vol.27, pp. 1400-1408, 2011.
  25. [25] B. D. Beynnon and B. C. Fleming, “Anterior cruciate ligament strain in-vivo: a review of previous work,” J Biomech, Vol.31, pp. 519-525, 1998.
  26. [26] R. Kuroda, Y. Hoshino, D. Araki, Y. Nishizawa, K. Nagamune, T. Matsumoto, S. Kubo, T. Matsushita, and M. Kurosaka, “Quantitative measurement of the pivot shift, reliability, and clinical applications,” Knee Surg Sports Traumatol Arthrosc, Vol.20, pp. 686-691, 2012.
  27. [27] Y. Hoshino, R. Kuroda, K. Nagamune, D. Araki, S. Kubo, M. Yamaguchi, and M. Kurosaka, “Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency,” Knee Surg Sports Traumatol Arthrosc, Vol.20, pp. 1323-1330, 2012.
  28. [28] A. D. Milne, D. G. Chess, J. A. Jhonson, G. J. W. King, “Accuracy of an electromagnetic tracking device: a study of the optimal operating range and metal interface,” J Biomech, Vol.29, pp. 791-793, 1996.
  29. [29] K. Nishimoto, R. Kuroda, K. Mizuno, Y. Hoshino, K. Nagamune, S. Kubo, M. Yagi, M. Yamaguchi, S. Yoshiya, and M. Kurosaka M, “Analysis of the graft bending angle at the femoral tunnel aperture in anatomic double bundle anterior cruciate ligament reconstruction: a comparison of the transtibial and the far anteromedial portal technique,” Knee Surg Sports Traumatol Arthrosc, Vol.17, pp. 270-276, 2009.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 03, 2024