Paper:
A Class Association Rule Based Classifier Using Probability Density Functions for Intrusion Detection Systems
Shingo Mabu*, Wenjing Li**, and Kotaro Hirasawa**
*Graduate School of Science and Engineering, Yamaguchi University
2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
**Graduate School of Information, Production and Systems, Waseda University
2-7 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
- [1] D. E. Denning, “An Intrusion Detection Model,” IEEE Trans. on Software Engineering, Vol.13, pp. 222-232, 1987.
- [2] W. Lee and S. J. Stolfo, “Data Mining Approaches for Intrusion Detection,” Proc. of the 1998 USENIX Security Symp., 1998.
- [3] W. Lee and S. J. Stolfo, “A Framework for Construction Features and Models for Intrusion Detection System,” ACM Trans. on Information and System Security, Vol.3, No.4, pp. 227-261, 2000.
- [4] Z. Bankovic´, D. Stepanovic´, S. Bojanic´, and O. Nieto-Taladriz, “Improving network security using genetic algorithm approach,” Computers and Electrical Engineering, Vol.33, pp. 438-451, 2007.
- [5] W. Lu and I. Traore, “Detecting new forms of network intrusion using genetic programming,” Computational Intelligence, Vol.20, No.3, pp. 474-494, 2004.
- [6] G. Folino, C. Pizzuti, and G. Spezzano, “GP Ensemble for Distributed Intrusion Detection Systems,” ICAPR 2005, Lecture Notes in Computer Science (LNCS) 3686, pp. 54-62, Springer-Verlag Berlin Heidelberg, 2005.
- [7] B. Casewell and J. Beale, “SNORT 2.1, Intrusion Detection, second edition,” Syngress, 2004.
- [8] M. Roesch, “SNORT–Lightweight Intrusion Detection for Networks,” Proc. of the USENIX 13th Systems Administration Conf., pp. 229-238, 1999.
- [9] S. A. Hofmeyr, A. Somayaji, and S. Forrest, “Intrusion detection using sequences of system calls,” J. Comput. Secur., Vol.6, No.3, pp. 151-180, 1998.
- [10] S.-J. Han and S.-B. Cho, “Evolutionary Neural Networks for Anamoly Detection Based on the Behavior of a Program,” IEEE Trans. on Systems, Man, and Cybernetics Part B, Cybernetics, Vol.36, No.3, pp. 559-570, 2006.
- [11] K. Hwang, M. Cai, Y. Chen, and M. Qin, “Hybrid Intrusion Detection with Weighted Signature Generation over Anomalous Internet Episodes,” IEEE Trans. Dependable Secure Comput., Vol.4, No.1, pp. 41-55, 2007.
- [12] J. H. Holland, “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor, 1975.
- [13] D. E. Goldberg, “Genetic Algorithm in search, optimization and machine learning,” Addison-Wesley, 1989.
- [14] J. R. Koza, “Genetic Programming, on the programming of computers by means of natural selection,” MIT Press, Cambridge, Mass., 1992.
- [15] J. R. Koza, “Genetic Programming II, Automatic Discovery of Reusable Programs,” MIT Press, Cambridge, Mass., 1994.
- [16] S. Mabu, K. Hirasawa, and J. Hu, “A Graph-Based Evolutionary Algorithm: Genetic Network Programming (GNP) and Its Extension Using Reinforcement Learning,” Evolutionary Computation, Vol.15, No.3, pp. 369-398, 2007.
- [17] K. Hirasawa, T. Eguchi, J. Zhou, L. Yu, and S. Markon, “A Double-Deck Elevator Group Supervisory Control System Using Genetic Network Programming,” IEEE Trans. on Systems, Man, and Cybernetics–-Part C: Applications and Reviews, Vol.38, No.4, pp. 535-550, 2008.
- [18] K. Hirasawa, M. Okubo, H. Katagiri, J. Hu, and J. Murata, “Comparison between Genetic Network Programming (GNP) and Genetic Programming (GP),” Proc. of the Congress on Evolutionary Computation, pp. 1276-1282, 2001.
- [19] D. B. Fogel, “An introduction to simulated evolutionary optimization,” IEEE Trans. on Neural Networks, Vol.5, No.1, pp. 3-14, January 1994.
- [20] L. J. Fogel, A. J. Owens, and M. J. Walsh, “Artificial Intelligence through simulated Evolution,” John Wiley & Sons, 1966.
- [21] R. S. Sutton and A. G. Barto, “Reinforcement Learning - An Introduction,” MIT Press, Cambridge, Mass., London, England, 1998.
- [22] S. Mabu, H. Hatakeyama, K. Hirasawa, and J. Hu, “Genetic network programming with Reinforcement Learning Using Sarsa Algorithm,” Proc. of the 2006 Congress on Evolutionary Computation, pp. 1570-1576, 2006.
- [23] K. Shimada, K. Hirasawa, and J. Hu, “Genetic Network Programming with Acquisition Mechanisms of Association Rules,” J. of Advanced Computational Intelligence and Intelligent Informatics (JACIII), Vol.10, No.1, pp. 102-111, 2006.
- [24] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” Proc. of the 20th VLDB Conf., pp. 487-499, Santiago, Chile, 1994.
- [25] S. Mabu, C. Chen, N. Lu, K. Shimada, and K. Hirasawa, “An Intrusion Detection Model Based on Fuzzy Class Association Rule Mining Using Genetic Network Programming,” IEEE Trans. on Systems, Man, and Cybernetics–-Part C: Applications and Reviews, Vol.41, No.1, pp. 130-139, 2010.
- [26] Y. Gong, S. Mabu, C. Chen, Y. Wang, and K. Hirasawa, “Intrusion Detection System Combining Misuse Detection and Anomaly Detection Using Genetic Network Programming,” Proc. of the SICE-ICASE Int. Joint Conf., pp. 3463-3467, 2009.
- [27] KDDCup1999 Data, newblock http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. [Accessed January 25, 2010]
- [28] R. P. Lippmann, D. J. Fried, I. Graf, J. Haines, K. P. Kendall, D. McClung, D. Weber, S. Webster, D. Wyschogrod, R. K. Cunningham, and M. A. Zissman, “Evaluating Intrusion Detection Systems: The 1998 DARPA Offline Intrusion Detection Evaluation,” Proc. of the DARPA Information Survivability Conf. and Exposition 2000, Vol.2, IEEE Computer Society Press, 2000.
- [29] J. Zhang, M. Zulkernine, and A. Haque, “Random-Forests-Based Network Intrusion detection Systems,” IEEE Trans. on Systems, Man, and Cybernetics—Part C: Applications and Reviews, Vol.38, No.5, pp. 649-659, 2008.
- [30] Z. Yu, J. J. P. Tsai, and T. Weigert, “An Automatically Tuning Intrusion Detection System,” IEEE Trans. on Systems, Man, and Cybernetics—Part B: Cybernetics, Vol.37, No.2, pp. 373-384, 2006.
- [31] W. Hu, W. Hu, and S. Maybank, “AdaBoost-Based Algorithm for Network Intrusion Detection,” IEEE Trans. on Systems, Man, and Cybernetics—Part B: Cybernetics, Vol.38, No.2, pp. 577-583, 2008.
- [32] K. Shimada, K. Hirasawa, and J. Hu, “Class Association Rule Mining with Chi-Squared Test Using Genetic Network Programming,” Proc. of the IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 5338-5344, 2006.
- [33] C. Chen, S. Mabu, K. Shimada, and K. Hirasawa, “Network Intrusion Detection using Class Association Rule Mining Based on Genetic Network Programming,” IEEJ Trans. on Electrical and Electronic Engineering, Vol.5, No.5, pp. 553-559, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.