Paper:
Multi-Robot Behavior Adaptation to Humans’ Intention in Human-Robot Interaction Using Information-Driven Fuzzy Friend-Q Learning
Lue-Feng Chen*,**, Zhen-Tao Liu**, Min Wu**, Fangyan Dong*, and Kaoru Hirota*
*Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology
G3-49, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
**School of Automation, China University of Geosciences
No. 388 Lumo Road, Hongshan District, Wuhan, Hubei 430074, China
- [1] S. Ikemoto, H. B. Amor, T. Minato, B. Jung, and H. Ishiguro, “Physical Human-Robot Interaction: Mutual Learning and Adaptation,” IEEE Robotics & Automation Magazine, Vol.19, No.4, pp. 24-35, 2012.
- [2] M. A. Goodrich and A. C. Schultz, “Human-Robot Interaction: A Survey,” Foundations and Trends in Human-Computer Interaction Vol.1, No.3, pp. 203-275, 2007.
- [3] K. G. Kim, D. Choi, J. Y. Lee, J. M. Park, and B. J. You, “Controlling a Humanoid Robot in Home Environment with a Cognitive Architecture,” IEEE Int. Conf. on Robotics and Biomimetics, pp. 1754-1759, 2011.
- [4] N. Mitsunaga, T. Miyashita, H. Ishiguro, K. Kogure, and N. Hagita, “Robovie-IV: A Communication Robot Interacting with People Daily in an Office,” Proc. of Int. Conf. on Intelligent Robots and System, pp. 5066-5072, 2006.
- [5] N. Mitsunaga, C. Smith, T. Kanda, H. Ishiguro, and N. Hagita, “Adapting Robot Behavior for Human-Robot Interaction,” IEEE Trans. on Robotics, Vol.24, No.4, pp. 911-916, 2008.
- [6] N. Ay, H. Bernigau, R. Der, and M. Prokopenko, “Information-Driven Self-Organization: the Dynamical System Approach to Autonomous Robot Behavior,” Theory Biosciences, Vol.131, No.3, pp. 161-179, 2012.
- [7] Y. Tian, T. Kanade, and J. F. Cohn, “Facial Expression Recognition,” Handbook of Face Recognition, Springer London, pp. 487-519, 2011.
- [8] Z. T. Liu, M. Wu, D. Y. Li, L. F. Chen, F. Y. Dong, Y. Yamazaki, and K. Hirota, “Concept of Fuzzy Atmosfield for Representing Communication Atmosphere and Its Application to Humans-Robots Interaction,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.17, No.1, pp. 3-17, 2013.
- [9] Y. K. Tang, F. Y. Dong, M. Yuhki, Y. Yamazaki, T. Shibata, and K. Hirota, “Deep Level Situation Understanding and Its Application to Casual Communication Between Robots and Humans,” Int. Conf. on Informatics in Control, Automation and Robotics, pp. 292-299, 2013.
- [10] K. Muelling, J. Kober, O. Kroemer, and J. Peters, “Learning to Select and Generalize Striking Movements in Robot Table Tennis,” The Int. J. of Robotics Research, Vol.32, No.3, pp. 263-279, 2013.
- [11] E. A. Sisbot, L. F. M. Urias, X. Broquère, D. Sidobre, and R. Alami, “Synthesizing Robot Motions Adapted to Human Presence,” Int. J. of Social Robotics, Vol.2, No.3, pp. 329-343, 2010.
- [12] V. Tikhanoff, A. Cangelosi, and G. Metta, “Integration of Speech and Action in Humanoid Robots: iCub Simulation Experiments,” IEEE Trans. on Autonomous Mental Development, Vol.3, No.1, pp. 17-29, 2011.
- [13] M. S. Erden, “Emotional Postures for the Humanoid-Robot Nao,” Int. J. of Social Robotics, Vol.5, No.4, pp. 441-456, 2013.
- [14] L. F. Chen, Z. T. Liu, F. Y. Dong, Y. Yamazaki, M. Wu, and K. Hirota, “Adapting Multi-Robot Behavior to Communication Atmosphere in Humans-Robots Interaction Using Fuzzy Production Rule Based Friend-Q Learning,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.17, No.2, pp. 291-301, 2013.
- [15] L. F. Chen, Z. T. Liu, M. Wu, F. Y. Dong, Y. Yamazaki, and K. Hirota, “Multi-robot behavior adaptation to local and global communication atmosphere in humans-robots interaction,” J. on Multimodal User Interfaces, Vol.8, No.3, pp. 289-303, 2014.
- [16] L. F. Chen, Z. T. Liu, M. Wu, M. Ding, F. Y. Dong, Y. Yamazaki, and K. Hirota, “Emotion-age-gender-nationality based Intention Understanding in Human-Robot Interaction Using Two-Layer Fuzzy Support Vector Regression,” Int. J. of Social Robotics, 2015.
- [17] J. Kober and J. Peters, “Reinforcement Learning in Robotics: A Survey,” Reinforcement Learning, Springer Berlin Heidelberg, pp. 579-610, 2012.
- [18] L. Busoniu, R. Babuska, and B. D. Schutter, “Multi-agent Reinforcement Learning: An Overview,” Innovations in Multi-Agent Systems and Applications-1, Springer Berlin Heidelberg, pp. 183-221, 2010.
- [19] M. L. Littman, “Markov Games as a Framework for Multi-Agent Reinforcement Learning,” Proc. of the 11th Int. Conf. on Machine Learning, pp. 157-163, 1994.
- [20] J. Hu and M. P. Wellman, “Nash Q-Learning for General-Sum Stochastic Games,” J. of Machine Learning Research, Vol.4, pp. 1039-1069, 2003.
- [21] M. L. Littman, “Friend-or-Foe Q-learning in General-Sum Games,” Proc. of Eighteenth Int. Conf. on Machine Learning, pp. 322-328, 2001.
- [22] C. J. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, Vol.8, No.3-4, pp. 279-292, 1992.
- [23] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement Learning: a Survey,” J. of Artificial Intelligence Research, Vol.4, pp. 237-285, 1996.
- [24] S. Singh, T. Jaakkola, M. Littman, and C. Szepesvari, “Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms,” Machine Learning, Vol.38, No.3, pp. 287-308, 2000.
- [25] Z. T. Liu, M. Wu, D. Y. Li, L. F. Chen, F. Y. Dong, Y. Yamazaki, and K. Hirota, “Communication Atmosphere in Humans-Robots Interaction based on Concept of Fuzzy Atmosfield Generated by Emotional States of Humans and Robots,” J. of Automation, Mobile Robotics and Intelligent Systems, Vol.7, No.2, pp. 52-63, 2013.
- [26] Z. T. Liu, Z. Mu, L. F. Chen et al., “Emotion Recognition of Violin Music based on Strings Music Theory for Mascot Robot System,” 9th Int. Conf. on Informatics in Control, Automation and Robotics, pp. 5-14, 2012.
- [27] H. A. Vu, Y. Yamazaki, F. Y. Dong, and K. Hirota, “Emotion Recognition based on Human Gesture and Speech Information Using RT Middleware,” IEEE Int. Conf. on Fuzzy Systems, pp. 787-791, 2011.
- [28] G. Hu, W. P. Tay, and Y. Wen, “Cloud Robotics: Architecture, Challenges and Applications,” IEEE Network, Vol.26, No.3, pp. 21-28, 2012.
- [29] S. Calinon, P. Kormushev, and D. G. Caldwell, “Compliant Skills Acquisition and Multi-Optima Policy Search with EM-based Reinforcement Learning,” Robotics and Autonomous Systems, Vol.61, No.4, pp. 369-379, 2013.
- [30] M. Richter, Y. Sandamirskaya, and G. Schoner, “A Robotic Architecture for Action Selection and Behavioral Organization Inspired by Human Cognition,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2457-2464, 2012.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.