Paper:
An Algorithm for Recomputing Concepts in Microarray Data Analysis by Biological Lattice
Hidenobu Hashikami*, Takanari Tanabata**, Fumiaki Hirose***,
Nur Hasanah*, Kazuhito Sawase*, and Hajime Nobuhara*
*Department of Intelligent Interaction Technologies, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba Science City, Ibaraki 305-8573, Japan
**Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
***Functional Transgenic Crops Research Unit, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- [1] S. Knudsen, “A biologist’s guide to analysis of DNA microarray data,” John Wiley and Sons, 2002.
- [2] J. Kim, H. J. Chung, Y. Jung, K. K. Kim, and J. H. Kim, “Bio-Lattice: a framework for the biological interpretation of microarray gene expression data using concept lattice analysis,” J. of Biomedical Informatics, Vol.41, pp. 232-241, 2008.
- [3] T. Tanabata, F. Hirose, H. Hashikami, and H. Nobuhara, “Interactive data mining tool for microarray data analysis using formal concept analysis,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.16, No.2, pp. 273-281, 2012.
- [4] B. Ganter, G. Stumme, and R. Wille (Eds.), “Formal concept analysis: foundation and application,” LNAI 3626, 2005.
- [5] U. Priss, “Formal concept analysis in information science,” Annual Review of Information Science and Technology, Vol.40, 2006.
- [6] R. Wille, “Restructuring lattice theory: an approach based on hierarchies of concepts,” In I. Rival (Ed.), Ordered sets, Reidel, Dordrecht-Boston, pp. 445-470, 1982.
- [7] H. Hashikami, N. Hasanah, K. Sawase, T. Tanabata, F. Hirose, and H. Nobuhara, “An efficient recomputing concepts algorithm for microarray data analysis using biological lattice,” Proc. 2011 Int. Workshop Smart Info-Media Systems in Asia (SISA 2011), Nagasaki, RS2-10, 2011.
- [8] U. Priss, “Formal concept analysis homepage, formal concept analysis algorithms,” 2007.
http://www.upriss.org.uk/fca/fcaalgorithms.html - [9] B. Ganter, “Two basic algorithms in concept analysis,” Technical Report FB4-Preprint, TH Darmstadt, 831, 1984.
- [10] P. Krajca, J. Outrata, and V. Vychodil, “Advances in algorithms based on CbO,” CLA’2010, 2010.
- [11] S. Andrews, “In-Close, a fast algorithm for computing formal concepts,” In Rudolph, Dau, Kuznetsov (Eds.), Supplementary Proc. of ICCS’09, CEUR WS 483, 2009.
- [12] S. Andrews, “In-Close2, a high performance formal concept miner,” Conceptual Structures for Discovering Knowledge – 19th Int. Conf. on Conceptual Structures, ICCS 2011, pp. 25-29, 2011.
- [13] P. Krajca, J. Outrata, and V. Vychodil, “Parallel recursive algorithm for FCA,” R. Belohlavek and S. O. Kuznetsov (Eds.), Proc. CLA 2008, CEUR WS, 433, 2008.
- [14] R. Godin, R. Missaoui, and H. Alaoui, “Incremental concept formation algorithms based on Galois (concept) lattices,” Computational Intelligence, Vol.11, No.2, pp. 246-267, 1995.
- [15] D. Merwe, S. Obiedkov, and D. Kourie, “AddIntent: A new incremental algorithm for constructing concept lattices,” Concept Lattices, 2nd Int. Conf. on Formal Concept Analysis, ICFCA 2004, Vol.2961, pp. 372-385, 2004.
- [16] J. Poelmans, P. Elzinga, S. Viaene, and G. Dedene, “Formal concept analysis in knowledge discovery:a survey,” ICCS, ser. LNCS, Vol.6208, pp. 139-153, 2010.
- [17] C. Carpineto and G. Romano, “Concept data analysis: theory and applications,” John Wiley and Sons, 2010.
- [18] K. Sawase and H. Nobuhara, “Management system for tagged image database using lattice structure,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.14, No.2, pp. 150-154, 2010.
- [19] T. Tanabata, K. Sawase, H. Nobuhara, and B. Bede, “Interactive data mining for large-scale image databases based on formal concept analysis,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.14, No.3, pp. 303-308, 2010.
- [20] T. Itoh et al., “Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana,” Genome Res., Vol.17, No.2, pp. 175-183, 2007.
- [21] Rice Annotation Project, “The rice annotation project database (RAP-DB): 2008 update,” Nucleic Acids Res., 36:D1028-D1033, 2008.
- [22] Q. Wu and Z. Liu, “Real formal concept analysis based on greyrough set theory,” Knowledge-Based Systems, Vol.22, No.1, pp. 38-45, 2009.
- [23] K. M. Folta, M. A. Pontin, G. Karlin-Neumann, R. Bottini, and E. P. Spalding, “Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light,” The Plant J., Vol.36, pp. 203-214, 2003.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.