JACIII Vol.17 No.3 pp. 404-417
doi: 10.20965/jaciii.2013.p0404


An RGB Multi-Channel Representation for Images on Quantum Computers

Bo Sun, Abdullah M. Iliyasu, Fei Yan,
Fangyan Dong, and Kaoru Hirota

Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, G3-49, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

December 25, 2012
February 27, 2013
May 20, 2013
quantum computation, image processing, quantum image, quantum circuit, color space

RGB multi channel representation is proposed for images on quantum computers (MCQI) that captures information about colors (RGB channels) and their corresponding positions in an image in a normalized quantum state. The proposed representation makes it possible to store the RGB information about an image simultaneously by using 2n+3 qubits for encoding 2n × 2n pixel images, whereas pixel-wise processing is necessary in many other quantum image representations, e.g., qubit lattice, grid qubit, and quantum lattice. Simulation of storage and retrieval of MCQI images using human facial images demonstrated that 15 qubits are required for encoding 64 × 64 colored images, and encoded information is retrieved by measurement. Perspectives of designing quantum image operators are also discussed based onMCQI representation, e.g., channel of interest, channel swapping, and restrict version of color transformation.

Cite this article as:
B. Sun, A. Iliyasu, F. Yan, <. Dong, and K. Hirota, “An RGB Multi-Channel Representation for Images on Quantum Computers,” J. Adv. Comput. Intell. Intell. Inform., Vol.17, No.3, pp. 404-417, 2013.
Data files:
  1. [1] S. Venegas-Andraca and S. Bose, “Storing, processing and retrieving an image using quantum mechanics,” In Proc. of the SPIE Conf. Quantum Information and Computation, pp. 137-147, 2003.
  2. [2] U. Mutze, “Quantum Image Dynamics – an entertainment application of separated quantum dynamics,” 2008.
  3. [3] S. Venegas-Andraca and J. Ball, “Processing images in entangled quantum systems,” Quantum Information Processing, Vol.9, No.1, pp. 1-11, 2010.
  4. [4] P. Le, F. Dong, and K. Hirota, “A flexible representation of quantum images for polynomial preparation, image compression, and processing operations,” Quantum Information Processing, Vol.10, No.1, pp. 63-84, 2011.
  5. [5] P. Le, A. Iliyasu, F. Dong, and K. Hirota, “Fast geometric transformations on quantum images,” IAENG Int. J. of Applied Mathematics, Vol.40, Issue 3, pp. 113-123, 2010.
  6. [6] P. Le, A. Iliyasu, F. Dong, and K. Hirota, “Efficient Color Transformations on Quantum Images,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.15, No.6, pp. 698-706, 2011.
  7. [7] A. Iliyasu, P. Le, F. Dong, and K. Hirota, “Watermarking and authentication of quantum images based on restricted geometric transformations,” Information Sciences, 2011.
  8. [8] S. Machnes, “QLib-A Matlab Package for Quantum Information Theory Calculations with Applications,” Arxiv preprint arXiv:0708.0478, 2007.
  9. [9] K. Plataniotis and A. Venetsanopoulos, “Color image processing and applications,” Springer Verlag Wien, 2000.
  10. [10] B. Sun, P. Le, A. Iliyasu, F. Yan, J. Garcia, F. Dong, and K. Hirota, “A Multi-Channel Representation for images on quantum computers using the RGBα color space,” In 2011 IEEE 7th Int. Symposium on Intelligent Signal Processing (WISP), pp. 1-6, 2011.
  11. [11] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Physical Review A, Vol.52, No.5, p. 3457, 1995.
  12. [12] M. Nielsen and I. Chuang, “Quantum computation and quantum information,” Cambridge university press, 2010.
  13. [13] C. Lomont, “Quantum convolution and quantum correlation algorithms are physically impossible,” Arxiv preprint quantph/0309070, 2003.
  14. [14] A. Al-Nu’aimi and R. Qahwaji, “Robust Self Embedding Watermarking Technique in the DWT Domain for Digital Colored Images,” J. of Digital Information Management, Vol.5, No.4, p. 211, 2007.
  15. [15] F. Di Martino, V. Loia, and S. Sessa, “Direct and Inverse Fuzzy Transforms for Coding/Decoding Color Images in YUV Space,” J. of Uncertain Systems, Vol.3, No.1, pp. 11-30, 2009.
  16. [16] F. Luthon, B. Beaumesnil, and N. Dubois, “LUX color transform for mosaic image rendering,” In 2010 IEEE Int. Conf. on Automation Quality and Testing Robotics (AQTR), Vol.3, pp. 1-6, 2010.
  17. [17] D. A. Herrera-Martí, A. G. Fowler, D. Jennings, and T. Rudolph, “Photonic implementation for the topological cluster-state quantum computer,” Physical Review A, Vol.82, No.3, p. 032332, 2010.
  18. [18] A. Politi, J. C. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science, Vol.325, No.5945, pp. 1221-1221, 2009.
  19. [19] J. Du, N. Xu, X. Peng, P. Wang, S. Wu, and D. Lu, “NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation,” Physical review letters, Vol.104, No.3, p. 30502, 2010.
  20. [20] B. P. Lanyon, J. D. Whitfield, G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell,M. Barbieri et al., “Towards quantum chemistry on a quantum computer,” Nature Chemistry, Vol.2, No.2, pp. 106-111, 2010.
  21. [21] R.-B. Liu, W. Yao, and L. Sham, “Quantum computing by optical control of electron spins,” Advances in Physics, Vol.59, No.5, pp. 703-802, 2010.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 13, 2018