Paper:
Nonlinear Dynamic System Identification Using Volterra Series: Multi-Objective Optimization Approach
Sayed Mohammad Reza Loghmanian*,**, Rubiyah Yusof**,
and Marzuki Khalid**
*Faculty of Engineering, Islamic Azad University, Mobarakeh Branch, Isfahan, Iran
**Centre for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia, International Campus, Jalan Semarak, 54100 Kuala Lumpur, Malaysia
- [1] O. Nelles, “Nonlinear System Identification; From Classical Approaches to Neural Networks and Fuzzy Models,” Springer, Germany, 2001.
- [2] M. J. Korenberg, “A Robust Orthogonal Algorithm for System Identification and Time-Series Analysis,” Biol. Cybern., Vol.60, pp. 267-276, 1989.
- [3] R. H. M. Abbas and M. M. Bayoumi, “An adaptive evolutionary algorithm for Volterra system identification,” Pattern Recognition Letters, Vol.26, No.1, pp. 109-119, 2005.
- [4] L. Yao, “Genetic Algorithm Based Identification of Nonlinear Systems by Sparse Volterra Filters,” IEEE Trans. Signal Process., Vol.47, No.12, pp. 3433-3435, 1999.
- [5] H. M. Abbas and M. M. Bayoumi, “Volterra System Identification Using Adaptive Genetic Algorithms,” Applied Soft Computing, Vol.5, pp. 75-86, 2004.
- [6] S. M. R. Loghmanian, R. Ahmad, and H. Jamaluddin, “Multiobjective Optimization of Neural Network Structure for System Identification Using Genetic Algorithm,” Int. J. of Computer Sciences and Engineering Systems, Vol.5, No.3, 2011.
- [7] L. Li and S. A. Billings, “Analysis of Nonlinear Oscillators Using Volterra Series in the Frequency Domain,” J. of Sound and Vibration, Vol.330, pp. 337-355, 2011.
- [8] S. Boyd and L. O. Chua, “Fading Memory and the Problem of Approximating Nonlinear Operators with Volterra Series,” IEEE Trans. on Circuits and Systems, Vol.32, No.11, pp. 1150-1161, 1985.
- [9] Q. Zhang, B. Suki, D. Westwick, and K. R. Lutchen, “Factors Affecting Volterra Kernel Estimation: Emphasis on Lung Tissue Viscoelasticity,” Annals of Biomedical Engineering, Vol.26, pp. 103-116, 1998.
- [10] W. M. Ling and D. E. Rivera, “Control Relevant Model Reduction of Volterra Series Models,” J. of Process Control, Vol.8, No.2, pp. 79-88, 1998.
- [11] J.Wray and G. Green, “Calculation of the Volterra Kernels of Nonlinear Dynamic Systems Using an Artificial Neural Network,” Biol. Cybern., Vol.71, pp. 187-195, 1994.
- [12] A. Rosa, R. J. G. B. Campello, and W. C. Ameral, “Choice of Free Parameters in Expansions of Discrete Time Volterra Models Using Kautz Functions,” Automatica, Vol.43, pp. 1084-1091, 2007.
- [13] D. Mirri, G. Iuculano, P. A. Traverso, G. Pasini, and F. Filicori, “Non-linear dynamic system modelling based on modified Volterra series approaches,” Measurement, Vol.33, No.1, pp. 9-21, 2003.
- [14] H. Tang, Y. H. Liao, J. Y. Cao, and H. Xie, “Fault Diagnosis Approach Based on Volterra Models,” Mechanical Systems and Signal Processing, Vol.24, pp. 1099-1113, 2010.
- [15] W. Suleiman and A. Monin, “New Method for Identifying Finite Degree Volterra Series,” Automatica, Vol.44, pp. 488-497, 2008.
- [16] H. M. Abbas and M. M. Bayoumi, “Volterra system identification using adaptive genetic algorithms,” Applied Soft Computing, Vol.5, No.1, pp. 75-86, 2004.
- [17] J. D. Schaffer, “Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithm,” K. Deb (Ed.), Multi-objective Optimization Using Evolutionary Algorithms, John Wiley, Chichester, 1984.
- [18] K. Deb, “Multi-objective Optimization Using Evolutionary Algorithms,” John Wiley, Chichester, 2001.
- [19] N. Srinivas and K. Deb, “Multi-objective Optimization Using Nondominated Sorting in Genetic Algorithms,” Evolutionary Computation, Vol.2, No.3, pp. 221-248, 1994.
- [20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Trans. on Evolutionary Computation, Vol.6, No.2, pp. 182-197, 2002.
- [21] K. Tsuchida, H. Sato, H. Aguirre, and K. Tanaka, “Analysis of NSGA-II and NSGA-II with CDAS, and Proposal of an Enhanced CDASMechanism,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.13, No.4, pp. 470-480, 2009.
- [22] S. Y. Fakhouri, “Identification of the Volterra Kernels of Nonlinear Systems,” IEE Proc., Vol.127, No.6, pp. 296-304, 1980.
- [23] S. M. R. Loghmanian, H. Jamaluddin, R. Ahmad, R. Yusof, and M. Khalid, “Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm,” Neural Comput & Applic, DOI 10.1007/s00521-011-0560-3.
- [24] K. Deb and S. Jain, “Running Performance Metrics for EvolutionaryMulti-objective Optimization, Technical Report 2002004,” Kan-GAL, Indian Institute of Technology, Kanpur 208016, 2002.
- [25] S. A. Billings and W. S. F. Voon, “Correlation Based Model Validity Tests for Nonlinear Models,” Int. J. Control., Vol.44, No.1, pp. 235-244, 1986.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.