Paper:
Multiscale Image Aggregation for Dental Radiograph Segmentation
Martin Leonard Tangel*, Chastine Fatichah*,
Muhammad Rahmat Widyanto**, Fangyan Dong*,
and Kaoru Hirota*
*Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, G3-49, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
**Faculty of Computer Science, University of Indonesia, Depok Campus, Depok 16424, West Java, Indonesia
- [1] M. Petju et al., “Importance of Dental Records for Victim Identification Following the Indian Ocean Tsunami Disaster in Thailand,” Elsevier The Royal Institute of Public Health, Vol.121, No.4, pp. 251-257, 2007.
- [2] L. G. Shapiro and G. C. Stockman, “Computer Vision,” pp. 279-324, Prentice-Hall, 2001.
- [3] A. K. Jain and H. Chen, “Matching of Dental X-Ray Images for Human Identification,” Pattern Recognition, Elsevier, Vol.37, No.7, pp. 1519-1532, 2004.
- [4] O. Nomir et al., “Hierarchical Contour Matching for Dental X-Ray Radiographs,” Pattern Recognition, Elsevier, Vol.41, No.1, pp. 130-138, 2008.
- [5] M. Abdel-Mottaleb et al., “Challenges of Developing an Automated Dental Identification System,” Micro-Nano Mechatronics and Human Science, IEEE, Vol.1, pp. 411-414, 2003.
- [6] Y. H. Lai and P. L. Lin, “Effective Segmentation for Dental XRay Images Using Texture-Based Fuzzy Inference System,” LCNS 5259 Springer-Verlag, Vol.5259, pp. 936-947, 2008.
- [7] H. Gao and O. Chae, “Individual Tooth Segmentation from CT Images Using Level Set Method With Shape and Intensity Prior,” Pattern Recognition, Elsevier, Vol.43, No.7, pp. 2406-2417, 2010.
- [8] M. L. Tangel et al., “Fuzzy Logic based EmotionalMulti Agent System Approach for Dental X-Ray Image Segmentation,” Int. Symposium on Intelligent System Conf. 2010, Tokyo Metropolitan University, Japan, 2010.
- [9] G.W. Corder and D. I. Foreman, “Nonparametric Statistics for Non-Statisticians,” pp. 39-52, Wiley, 2009.
- [10] J. Zhang and S. Kamata, “Adaptive Local Contrast Enhancement for the Visualization of High Dynamic Range Images,” Pattern Recognition, IEEE, pp. 1-4, ICPR 2008.
- [11] http://radonc.ucsf.edu/research_group/jpouliot/Tutorial/HU/Lesson7.htm, Access time: January 2011.
- [12] P. Soille, “Morphological Image Analysis: Principles and Applications,” pp. 173-174, Springer-Verlag, 1999.
- [13] N. Otsu, “A Threshold Selection Method from Gray-Level Histogram,” IEEE Trans. on SMC, Vol.9, No.1, pp. 62-66, 1979.
- [14] M. L. Tangel et al., “Multiscale Image Analysis for Radiograph Segmentation,” World Congress of Int. Fuzzy System Association 2011, Surabaya-Bali, Indonesia, 2011.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.