Paper:
Improving the Robustness of Instance-Based Reinforcement Learning Robots by Metalearning
Toshiyuki Yasuda, Kousuke Araki, and Kazuhiro Ohkura
Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- [1] R.S. Sutton and A.G. Barto, “Reinforcement Learning: An Introduction,” MIT Press, 1998.
- [2] R.S. Sutton, “Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding,” Advances in Neural Information Processing Systems, Vol. 8, pp. 1038-1044, MIT Press, 1996.
- [3] J. Morimoto and K. Doya, “Acquisition of Stand-Up Behavior by a Real Robot using Hierarchical Reinforcement Learning for Motion Learning: Learning, “Stand Up” Trajectories,” Proc. of Intl. Conf. on Machine Learning, pp. 623-630, 2000.
- [4] L.J. Lin, “Scaling Up Reinforcement Learning for Robot Control,” Proc. of the 10th Intl Conf. on Machine Learning, pp. 182-189, 1993.
- [5] M. Asada, S. Noda, and K. Hosoda, “Action-Based Sensor Space Categorization for Robot Learning,” Proc. of IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 1502-1509, 1996.
- [6] Y. Takahashi, M. Asada, and K. Hosoda, “Reasonable Performance in Less Learning Time by Real Robot Based on Incremental State Space Segmentation,” Proc. of IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 1518-1524, 1996.
- [7] M. Svinin, F. Kojima, Y. Katada, and K. Ueda, “Initial Experiments on Reinforcement Learning Control of Cooperative Manipulations,” Proc. of IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 416-422, 2000.
- [8] T. Yasuda and K. Ohkura, “Autonomous Role Assignment in Homogeneous Multi-Robot Systems,” Journal of Robotics and Mechatronics, Vol. 17, No. 5, pp. 596-604, 2005.
- [9] T. Yasuda and K. Ohkura, “Improving Robustness of Reinforcement Learning for a Multi-Robot System Environment,” Proc. of the Fourth IEEE Intl. Workshop on Soft Computing as Transdisciplinary Science and Technology, pp. 265- 272, 2005.
- [10] T. Yasuda and K. Ohkura, “Improving Search Efficiency in the Action Space of an Instance-Based Reinforcement Learning,” Advances in Artifical Life, the 9th European Conf. on Artificial Life, LNAI, Vol. 4648, pp. 325-334, 2007.
- [11] K. Ohkura and R. Washizaki, “Robust Instance-Based Reinforcement Learning for Multi-Robot Systems,” Proc. of the 4th Intl. Conf. on Advanced Mechatronics, pp. 583-588, 2004.
- [12] K. Doya, “Reinforcement Learning in Continuous Time and Space,” Neural Computation, Vol. 12, pp. 219-245, 2000.
- [13] J. Peters and S. Schaal, “Natural actor critic,” Neurocomputing, Vol.71, 7-9, pp. 1180-1190, 2008.
- [14] R.J. Williams, “Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning,” Machine Learning, Vol. 8, pp. 229-256, 1992.
- [15] K. Doya, “Metalearning and neuromodulation,” Neural Networks, Vol. 15, Issues 4-6, pp. 495-506, 2002.
- [16] N. Schweighofer and K. Doya, “Meta-learning in Reinforcement Learning,” Neural Networks, Vol. 16, Issue 1, pp. 5-9, 2003.
- [17] S. Elfwing, E. Uchibe, K. Doya, and H.I. Chiristensen, “Coevolution of Shaping Rewards and Meta-Parameters in Reinforcement Learning,” Adaptive Behavior, Vol. 16, pp. 400-412, 2008.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.