Paper:
Network Parameter Setting for Reinforcement Learning Approaches Using Neural Networks
Kazuaki Yamada
Department of Mechanical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan
- [1] K. Sibata, “Emergence of Intelligence by Reinforcement Learning and a Neural Network,” J. of The Society of Instrument and Control Engineers, Vol.48, No.1, pp. 106-111, 2009.
- [2] R. S. Sutton and A. Barto, “Reinforcement Learning: An Introduction,” The MIT Press, 1998.
- [3] Y. Takahashi, M. Asada, S. Noda, and K. Hosoda, “Sensor Space Segmentation for Mobile Robot Learning,” Proc. of ICMAS’96 Workshop on Learning, Interaction and Organizations inMultiagent Environment, 1996.
- [4] T. Yairi, K. Hori, and S. Nakasuka, “Autonomous Reconstruction of State Space for Learning of Robot Behavior,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 2000, pp. 891-896, 2000.
- [5] R. Goto and H. Matsuo, “State Generalization Method with Support Vector Machines in Reinforcement Learning,” Systems and Computers in Japan, Vol.37, No.9, pp. 77-86, 2006.
- [6] M. Asada, S. Noda, and K. Hosoda, “Action-Based Sensor Space Categorization for Robot Learning,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 1996, pp. 1502-1509, 1996.
- [7] T. Yasuda and K. Ohkura, “Improving Segmentation of Action Space for the Instance-Based Reinforcement Learning Method Called BRL (1st Report, Behavior Acquisition for a Mobile Robot),” The Japan Society of Mechanical Engineers, Vol.74, No.747, pp. 2747-2754, 2008.
- [8] N. Kotani, M. Nunobiki, and K. Taniguchi, “A Novel Clustering Method Curbing the Number of States in Reinforcement Learning,” The Institute of Systems, Control and Information Engineers, Vol.22, No.1, pp. 21-28, 2009.
- [9] K. Shibata, M. Sugisaka, and K. Ito, “Fast and Stable Learning in Direct-Vision-Based Reinforcement Learning,” Proc. of Int. Symposium on Artificial Life and Robotics 6th, Vol.1, pp. 200-203, 2001.
- [10] J. Morimoto and K. Doya, “Reinforcement learning of dynamic motor sequences: Learning to stand up,” Proc. of IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vol.3, pp. 1721-1726, 1998.
- [11] J. Yoshimoto, S. Ishii, and M. Sato, “On-Line EM Reinforcement Learning for Automatic Control of Continuous Dynamical Systems,” J. of Systems, Control and Information Engineers, Vol.16, No.5, pp. 209-217, 2003.
- [12] S. Abe, “Neural Networks and Fuzzy Systems,” Springer, 1997.
- [13] H. Shimodaira, “A Weight Value Initialization Method for Improving Learning Performance of the Back Propagation Algorithm in Neural Networks,” J. of Information Processing, Vol.35, No.10, pp. 2046-2053, 1994.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.