Paper:
Fuzzy Nonlinear Regression Analysis Using Fuzzified Neural Networks for Fault Diagnosis of Chemical Plants
Daisaku Kimura*,**, Manabu Nii*, Takafumi Yamaguchi*,
Yutaka Takahashi*, and Takayuki Yumoto*
*Electrical Engineering and Computer Sciences, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2201, Japan
**Corporate Technology Administration Department, KANEKA Corporation, 3-2-4 Nakanoshima, Kita-ku, Osaka, Japan
- [1] K. Nabeshima, “A study of Reactor Monitoring Method with Neural Network,” JAERI1342, Japan Atomic Energy Research Institute, 2001. (in Japanese)
- [2] H.Maruta, M. Kano, H. Kugemoto, and K. Shimizu, “Modeling and detection of stiction of control valve,” Japan Society for the Promotion of Science, No.143 committee of Process System Engineering, Workshop, No.25 final report, 2005. (in Japanese)
- [3] J. Eino, T. Wakui, T. Hashizume, N. Miyachi, Y. Saito, K. Kuromori, and Y. Yuki, “Diagnosis of Impulse Line Blockage with Differential Pressure Transmitter: Part3: Diagnosis under transient states,” The Japan Society of Mechanical Engineers, Dynamics, Measurement and Control Division, Dynamics and Design Conference (CD-ROM), Vol.2006, No.314, 2006. (in Japanese)
- [4] M. Fukuda, “Toward Optimization/High Promotion of Efficiency of Control Valve Maintenance,” Japan TAPPI Journal, Vol.60, No.3, 2006. (in Japanese)
- [5] J. Zhang and A. J. Morris, “On-line process fault diagnosis using fuzzy neural networks,” Intelligent Systems Engineering, Vol.3, No.1, pp. 37-47, 1994.
- [6] J. Zhang and J. Morris, “Process modelling and fault diagnosis using fuzzy neural networks,” Fuzzy Sets and Systems, Vol.79, pp. 127-140, 1996.
- [7] H. Wang and W. W. Keerthipala, “Fuzzy-Neuro Approach to Fault Classification for Transmission Line Protection,” IEEE Trans. on Power Delivery, Vol.13, No.4, pp. 1093-1104, 1998.
- [8] R. Javadpour and G. M. Knapp, “A fuzzy neural network approach to machine condition monitoring,” Computers & Industrial Engineering, Vol.45, pp. 323-330, 2003.
- [9] S. Zhang, T. Asakura, X. Xu, and B. Xu, “Fault Diagnosis System for Rotary Machine Based on Fuzzy Neural Networks,” JSME Int. J., Series C, Vol.46, No.3, pp. 1035-1041, 2003.
- [10] H. Ishibuchi and M. Nii, “Fuzzy Regression using Asymmetric Fuzzy Coefficients and Fuzzified Neural Networks,” Fuzzy Sets and Systems, Vol.119, pp. 273-290, 2001.
- [11] H. Ishibuchi and M. Nii, “Numerical Analysis of the Learning of Fuzzified Neural Networks from Fuzzy If-Then Rules,” Fuzzy Sets and Systems, Vol.130, pp. 281-307, 2001.
- [12] D. Kimura, M. Nii, Y. Takahashi, and T. Yumoto, “Development of a Fault Diagnosis System based on Fuzzified Neural Networks,” Proc. of FUZZ-IEEE 2010, pp. 1169-1174, 2010.
- [13] D. Kimura, M. Nii, T. Yamaguchi, Y. Takahashi, and T. Yumoto, “Fuzzy Nonlinear Regression Analysis using Fuzzified Neural Networks for Fault Diagnosis,” Proc. of The 4th Int. Symposium on Computational Intelligence and Industrial Applications, pp. 35-40, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.