Paper:

# Generalisation of Scale and Move Transformation-Based Fuzzy Interpolation

## Qiang Shen and Longzhi Yang

Department of Computer Science, Aberystwyth University, Aberystwyth, SY23 3DB, UK

*J. Adv. Comput. Intell. Intell. Inform.*, Vol.15 No.3, pp. 288-298, 2011.

- [1] Z. Huang and Q. Shen, “Fuzzy interpolative reasoning via scale and move transformations,” IEEE Trans. Fuzzy Syst., Vol.14, No.2, pp. 340-359, 2006.
- [2] Z. Huang and Q. Shen, “Fuzzy interpolation and extrapolation: a practical approach,” IEEE Trans. Fuzzy Syst., Vol.16, No.1, pp. 13-28, 2008.
- [3] L. T. Kóczy and K. Hirota, “Approximate reasoning by linear rule interpolation and general approximation,” Int. J. Approx. Reason., Vol.9, No.3, pp. 197-225, 1993.
- [4] L. T. Kóczy and K. Hirota, “Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases,” Inf. Sci., Vol.71, No.1-2, pp. 169-201, 1993.
- [5] L. T. Kóczy and K. Hirota, “Size reduction by interpolation in fuzzy rule bases,” IEEE Trans. Syst., Man Cybern. Vol.27, No.1, pp. 14-25, 1997.
- [6] G. J. Klir, and B. Yuan, “Fuzzy sets and fuzzy logic: theory and applications,” Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1995. ISBN: 0-13-101171-5
- [7] J. A. Robinson, “A Machine-Oriented Logic Based on the Resolution Principle,” J. ACM, Vol.12, No.1, pp. 23-41, Jan. 1965.
- [8] L. A. Zadeh, “Quantitative fuzzy semantics,” Inf. Sci., Vol.3, No.2, pp. 159-176, Elsevier Science Inc., Apr. 1971.
- [9] D. Dubois and H. Prade, “On fuzzy interpolation,” Int. J. of General Systems, Vol.28, No.2, pp. 103-114, 1999.
- [10] L. Ughetto, D. Dubois, and H. Prade, “Fuzzy interpolation by convex completion of sparse rule bases,” The Ninth IEEE Int. Conf. on Fuzzy Systems 2000 (FUZZ IEEE 2000), Vol.1, pp. 465-470, May 2000.
- [11] Y.-C. Chang, S.-M. Chen, and C.-J. Liau, “Fuzzy Interpolative Reasoning for Sparse Fuzzy-Rule-Based Systems Based on the Areas of Fuzzy Sets,” IEEE Trans. on Fuzzy Systems, Vol.16, No.5, pp. 1285-1301, Oct. 2008.
- [12] D. Tikk and P. Baranyi, “Comprehensive analysis of a new fuzzy rule interpolation method,” IEEE Trans. on Fuzzy Systems, Vol.8, No.3, pp. 281-296, Jun. 2000.
- [13] K. W. Wong, D. Tikk, T. D. Gedeon, and L. T. Kóczy, “Fuzzy rule interpolation for multidimensional input spaces with applications: a case study,” IEEE Trans. on Fuzzy Systems, Vol.13, No.6, pp. 809-819, Dec. 2005.
- [14] W. Hsiao, S. Chen, and C. Lee, “A new interpolative reasoning method in sparse rule-based systems,” Fuzzy Sets Syst., Vol.93, No.1, pp. 17-22, 1998.
- [15] S. Kovács, “Extending the Fuzzy Rule Interpolation “FIVE” by Fuzzy Observation,” B. Reusch (Ed.), Computational Intelligence, Theory and Applications, pp. 485-497, Springer Berlin Heidelberg, 2006.
- [16] B. Bouchon-Meunier and L. Valverde, “A fuzzy approach to analogical reasoning,” Soft Computing – A Fusion of Foundations, Methodologies and Applications, Vol.3, No.3, pp. 141-147, 1999.
- [17] P. Baranyi, L. T. Kóczy, and T. D. Gedeo, “A generalized concept for fuzzy rule interpolation,” IEEE Trans. on Fuzzy Syst., Vol.12, No.6, pp. 820-837, 2004.
- [18] S.-M. Chen and Y.-K. Ko, “Fuzzy Interpolative Reasoning for Sparse Fuzzy Rule-Based Systems Based on α-Cuts and Transformations Techniques,” IEEE Trans. on Fuzzy Systems, Vol.16, No.6, pp. 1626-1648, Dec. 2008.
- [19] S. Jenei, “Interpolation and extrapolation of fuzzy quantities revisited – an axiomatic approach,” Soft Computing – A Fusion of Foundations, Methodologies and Applications, Vol.5, No.3, pp. 179-193, Springer Berlin/Heidelberg, 2001.
- [20] S. Jenei, E. P. Klement, and R. Konzel, “Interpolation and extrapolation of fuzzy quantities the multiple-dimensional case,” Soft Computing – A Fusion of Foundations, Methodologies and Applications Vol.6, No.3, pp. 258-270, Springer Berlin/Heidelberg, 2002.
- [21] Z. Johanyák and S. Kovács, “Fuzzy Rule Interpolation Based on Polar Cuts,” B. Reusch (Ed.), Computational Intelligence, Theory and Applications, pp. 499-511, 2006.
- [22] Z. Q. Wu, M. Mizumoto, and Y. Shi, “An improvement to Kóczy and Hirota’s interpolative reasoning in sparse fuzzy rule bases,” Int. J. of Approximate Reasoning, Vol.15, No.3, pp. 185-201, 1996.
- [23] Z. Huang and Q. Shen, “Preserving Piece-wise Linearity in Fuzzy Interpolation,” Proc. IEEE Int. Conf. Fuzzy Syst., pp. 575-580, 2009.
- [24] Q. Shen and R. Leitch, “Fuzzy qualitative simulation,” IEEE Trans. on Systems, Man and Cybernetics, Vol.23, No.4, pp. 1038-1061, Jul./Aug. 1993.
- [25] L. Yang and Q. Shen, “Towards Adaptive Interpolative Reasoning,” Proc. IEEE Int. Conf. Fuzzy Syst., pp. 542-549, 2009.
- [26] L. Yang and Q. Shen, “Adaptive Fuzzy Interpolation and Extrapolation with Multiple-antecedent Rules,” Proc. IEEE Int. Conf. Fuzzy Syst., pp. 565-572, 2010.

This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.