Paper:
Variable Precision Rough Set Model in Information Tables with Missing Values
Yoshifumi Kusunoki and Masahiro Inuiguchi
Department of Systems Innovation, Graduate School of Engineering Sciences, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- [1] Z. Pawlak, “Rough sets,” Int. J. Inf. Comput. Sci., Vol.11, No.5, pp. 341-356, 1982.
- [2] Z. Pawlak and A. Skowron, “Rudiments of rough sets,” Inf. Sci., Vol.177, pp. 3-27, 2007.
- [3] I. Düntsch, G. Gediga, and E. Orlowska, “Relational attribute systems,” Int. J. Hum.-Comput. Studies, Vol.55, pp. 293-309, 2001.
- [4] J. W. Grzymala-Busse, “Characteristic relations for incomplete data: A generalization of the indiscernibility relation,” In J. F. Peters and A. Skowron (Eds.), Trans. on Rough Sets IV, LNCS, 3700, Springer-Verlag, Berlin Heidelberg, pp. 58-68, 2005.
- [5] J. Stefanowski and A. Tsoukiàs, “Incomplete information tables and rough classification,” Comput. Intell., Vol.17, No.3, pp. 545-566, 2001.
- [6] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., Vol.1, pp. 81-106, 1986.
- [7] M. R. Chmieliwski, J. W. Grzymala-Busse, N. W. Peterson, and S. Than, “The rule induction system LERS – A version for personal computers,” Found. Comput. Decis. Sci., Vol.18, pp. 181-212, 1993.
- [8] M. Kryszkiewicz, “Rules in incomplete information systems,” Inf. Sci., Vol.113, pp. 271-292, 1999.
- [9] H. Sakai, R. Ishibashi, and M. Nakata, “Lower and upper approximations of rules in non-deterministic information systems,”C.-C. Chen et al. (Eds.), RSCTC 2008, LNAI 5306, Springer-Verlag, Heidelberg, pp. 299-309, 2008.
- [10] H. Sakai, K. Hayashi, H. Kimura, and M. Nakata, “An aspect of decision making in rough non-deterministic information analysis,” K. Nakamatsu et al. (Eds.), New Advan. in Intel. Decision Techno., SCI 199, Springer-Verlag Berlin Heidelberg, pp. 527-536, 2009.
- [11] M. Kryszkiewicz, “Rough set approach to incomplete information systems,” Inf. Sci., Vol.112, pp. 39-49, 1998.
- [12] P. J. Lingras and Y. Y. Yao, “Data mining using extensions of the rough set model,” J. Am. Soc. Inform. Sci., Vol.49, No.5, pp. 415-422, 1998.
- [13] J. W. Grzymala-Busse and W. J. Grzymala-Busse, “An experimental comparison of three rough set approaches to missing attribute values,” In J. F. Peters et al. (Eds.), Trans. on Rough Sets VI, LNCS 4374, Springer-Verlag, Berlin Heidelberg, pp. 31-50, 2007.
- [14] R. Słowiński and J. Stefanowski, “Rough classification in incomplete information systems,” Math. Comput. Modelling, Vol.12(10/11), pp. 1347-1357, 1989.
- [15] Y. Leung, W. Z. Wu, and W. X. Zhang, “Knowledge acquisition in incomplete information systems: A rough set approach,” Euro. J. Oper. Res., Vol.168, pp. 164-180, 2006.
- [16] M. Nakata and H. Sakai, “Applying rough sets to data tables containing imprecise information under probabilistic interpretation,” In S. Greco et al. (Eds.), RSCTC 2006, LNAI 4259, Springer-Verlag Berlin Heidelberg, pp. 213-223, 2006.
- [17] M. Nakata and H. Sakai, “Rough sets approximations in data tables containing missing values,” IEEE Int. Conf. on Fuzzy Syst., art. No.4630442, pp. 673-680, 2008.
- [18] Y. Leung and D. Li, “Maximal consistent block technique for rule acquisition in incomplete information systems,” Inf. Sci., Vol.153, pp. 85-106, 2003.
- [19] W. Ziarko, “Variable precision rough set model,” J. Comput. Sys. Sci., Vol.46, pp. 39-59, 1993.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.