Paper:
High-Speed Maximum Power Point Tracker for Photovoltaic Systems Using Online Learning Neural Networks
Yasushi Kohata*, Koichiro Yamauchi**, and Masahito Kurihara*
*Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
**Chubu University, Department of Information Science, 1200 Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan
- [1] G. J. Yu, Y. S. Jung, J. Y. Choi, and G. S. Kim, “A novel two-mode MPPT control algorithm based on comparative study of existing algorithms,” Solar Energy, Vol.76, No.4, pp. 455-463, 2004.
- [2] T. Tafticht, K. Agbossou, M. L. Doumbia, and A. Cheriti, “An improved maximum power point tracking method for photovoltaic systems,” Renewable Energy, Vol.33, No.7, pp. 1508-1516, 2008.
- [3] R. Akkaya, A. A. Kulaksiz, and O. Aydogdu, “DSP implementation of a PV system with GA-MLP-NN based MPPT controller supplying BLDC motor drive,” Energy Conversion and Management, Vol.48, No.1, pp. 210-218, 2007.
- [4] T. Hiyama and K. Kitabayashi, “Neural Network Based Estimation of Maximum Power Generation from PV Module Using Environmental Information,” IEEE Trans. on Energy Conversion, Vol.12, No.3, pp. 241-247, 1997.
- [5] Y. Kohata, K. Yamauchi, and M. Kurihara, “Quick Maximum Power Point Tracking of Photovoltaic Using Online Learning Neural Network,” Neural Information Processing, 16th Int. Conf., ICONIP 2009 Proc., Part I, LNCS 5863, pp. 606-613, 2009.
- [6] D. F. Specht, “A general regression neural network,” IEEE trans. Neural Networks, Vol.2, No.6, pp. 568-576, 1991.
- [7] D. Tomandl and A. Schober, “A Modified General Regression Neural Network (MGRNN) with a new efficient training algorithm as a robust “black-box”-tool for data analysis,” Neural Networks, Vol.14, pp. 1023-1034, 2001.
- [8] M. Su, J. Lee, and K. Hsieh, “A new ARTMAP-based neural network for incremental learning,” Neurocomputing, Vol.69, pp. 2284-2300, 2006.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.