Paper:
Acquiring a Government Bond Trading Strategy Using Reinforcement Learning
Tohgoroh Matsui*, Takashi Goto**, and Kiyoshi Izumi***
*Tohgoroh Machine Learning Research Institute, Chiba, Japan
**The Bank of Tokyo-Mitsubishi UFJ, Ltd., Tokyo, Japan
***National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- [1] P. Kaufman, “Smarter trading: Improving performance in changing markets,” McGraw-Hill Professional, 1995.
- [2] A. Sherstov and P. Stone, “Three automated stock-trading agents: A comparative study,” In Proc. of the AAMAS 2004 Workshop on Agent-Mediated Electronic Commerce (AMEC 2004), pp. 173-187, 2004.
- [3] F. Bertoluzzo and M. Corazza, “Making financial trading by recurrent reinforcement learning,” In Proc. of the 11th Int. Conf. on Knowledge-Based Intelligent Information and Engineering Systems (KES 2007), Part 2, pp. 619-626, 2007.
- [4] J. W. Lee, J. Park, J. O, J. Lee, and E. Hong, “A multiagent approach to Q-learning for daily stock trading,” IEEE Trans. on System, Man and Cybernetics, Part A, Vol.37, No.6, pp. 864-877, 2007.
- [5] G. Bates, M. Dempster, and Y. Romahi, “Evolutionary reinforcement learning in FX order book and order flow analysis,” In Proc. of the 2003 IEEE Int. Conf. on Computational Intelligence for Financial Engineering (CIFEr 2003), pp. 355-362, 2003.
- [6] C. Gold, “FX trading via recurrent reinforcement learning,” In Proc. of the 2003 IEEE Int. Workshop on Computational Intelligence for Financial Engineering (CIFEr 2003), pp. 363-370, 2003.
- [7] J. Bollinger, “Bollinger on Bollinger bands,” McGraw-Hill Professional, 2001.
- [8] T. Matsui, N. Inuzuka, and H. Seki, “On-line profit sharing works efficiently,” In Proc. of the 7th Int. Conf. on Knowledge-Based Intelligent Information and Engineering Systems (KES 2003), Part 1, pp. 317-324, 2003.
- [9] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,” The MIT Press, 1998.
- [10] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, Vol.8, No.3/4, pp. 279-292, 1992.
- [11] G. Rummery and M. Niranjan, “On-line Q-learning using connectionist systems,” Report CUED/F-INFENG-RT 116, Engineering Department, Cambridge University, 1994.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.