Paper:

# Modelling Numerical and Spatial Uncertainty in GrayscaleImage Capture Using Fuzzy Set Theory

## Mike Nachtegae^{∗}, Peter Sussner^{∗∗}, Tom Mélange^{∗},

and Etienne E. Kerre^{∗}

^{∗}Dept. of Applied Mathematics and Computer Science, Ghent University, Fuzziness and Uncertainty Modelling Research Unit

Krijgslaan 281 - S9, 9000 Gent, Belgium

^{∗∗}Dept. of Applied Mathematics, University of Campinas, Campinas, SP 13083 859, Brazil

*J. Adv. Comput. Intell. Intell. Inform.*, Vol.13 No.5, pp. 529-536, 2009.

- [1] L. Zadeh, “Fuzzy Sets,” in: Information Control, Vol.8, pp. 338-353, 1965.
- [2] S. Schulte, M. Nachtegael, V. DeWitte, D. Van der Weken, and E. E. Kerre, “Fuzzy impulse noise reduction methods for color images,” in: Proc. of FUZZY DAYS 2006 (Int. Conf. on Computational Intelligence), Dortmund (Germany), pp. 711-720.
- [3] S. Schulte, V. De Witte, M. Nachtegael, T. Mélange, and E. E. Kerre, “A new fuzzy additive noise reduction method,” in: Lecture Notes in Computer Science, Vol.4633 (Image Analysis and Recognition — Proc. of ICIAR 2007), pp. 12-23, 2007, ISBN 978-3-540-74258-6.
- [4] E. Vansteenkiste, D. Van der Weken, W. Philips, and E. E. Kerre, “Evaluation of the perceptual performance of fuzzy image quality measures,” in: Lecture Notes in Computer Science, Vol.4251, pp. 623-630, 2006.
- [5] J. Serra, “Image analysis and mathematical morphology,” Academic Press Inc, London, 1982.
- [6] B. De Baets, “Fuzzy morphology: a logical approach,” in: B. M. Ayyub and M. M. Gupta (Eds.), Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach, Kluwer Academic Publishers, Boston, pp. 53-67, 1997.
- [7] M. Nachtegael and E. E. Kerre, “Connections between binary, grayscale and fuzzy mathematical morphologies,” in: Fuzzy Sets and Systems, Vol.124, No.1, pp. 73-86, 2001.
- [8] P. Sussner and M. E. Valle, “Classification of Fuzzy Mathematical Morphologies Based on Concepts of Inclusion Measure and Duality,” in: Journal of Mathematical Imaging and Vision, accepted for publication, 2008.
- [9] I. Bloch, “Mathematical Morphology on Bipolar Fuzzy Sets,” in: Proc. of ISMM 2007 (Int. Symposium on Mathematical Morphology), pp. 3-4, 2007.
- [10] I. Bloch, “Dilation and Erosion of Spatial Bipolar Fuzzy Sets,” in: Lecture Notes in Artificial Intelligence, Vol.4578 (Proc. of WILF 2007), pp. 385-393, 2007.
- [11] M. Nachtegael, P. Sussner, T. Mélange, and E. E. Kerre, “Some Aspects of Interval-valued and Intuitionistic Fuzzy Mathematical Morphology,” accepted for IPCV 2008 — Int. Conf. on Image Processing, Computer Vision and Pattern Recognition (July 14-17, 2008, Las Vegas, US).
- [12] M. Nachtegael, P. Sussner, T. Mélange, and E. E. Kerre, “An Interval-valued Fuzzy Morphological Model based on Lukasiewicz-Operators,” accepted for ACIVS 2008 — Int. Conf. on Advanced Concepts for Intelligent Vision Systems (October 21-24, 2008, Juan-les-Pins, France).
- [13] J. M. Mendel, “Computing With Words: Zadeh, Turing, Popper and Occam,” in: IEEE Computational Intelligence Magazine, Vol.2, No.4, pp. 10-17, 2007.
- [14] O. Castillo and P. Melin, “Intelligent Systems with Interval Type-2 Fuzzy Logic,” in: Int. Journal of Innovative Computing, Information and Control, Vol.4, No.4, pp. 771-783, 2008.
- [15] G. Deschrijver and E. E. Kerre, “On the Relationship Between some Extensions of Fuzzy Set Theory,” in: Fuzzy Sets and Systems, Vol.133, pp. 227-235, 2003.
- [16] I. B. Turksen and Z. Zhong, “An Approximate Analogical Reasoning Schema based on Similarity Measures and Interval-Valued Fuzzy Sets,” in: Fuzzy Sets and Systems, Vol.34, No.3, pp. 323-346, 1990.
- [17] S. D. Cabrera, K. Iyer, G. Xiang, and V. Kreinovich, “On Inverse Halftoning: Computational Complexity and Interval Computations,” in: Proc. of CISS 2005 (39th Conf. on Information Sciences and Systems), The John Hopkins University, paper 164, 2005.
- [18] A. E. Brito and O. Kosheleva, “Interval + Image =Wavelet: For Image Processing under Interval Uncertainty, Wavelets are Optimal,” in: Reliable Computing, Vol.4, No.3, pp. 291-301, 1998.
- [19] E. Barrenechea, “Image Processing with interval-valued Fuzzy Sets- Edge Detection - Contrast,” Ph.D. thesis, Public University of Navarra, 2005.
- [20] K. Atanassov, “Intuitionistic Fuzzy Sets,” Physica Verlag, Heidelberg (Germany), 1999.
- [21] I. K. Vlachos and D. G. Sergiadis, “Towards Intuitionistic Fuzzy Image Processing,” in: Proc. of the Int. Conf. on Computational Intelligence for Modelling, Control and Automation and Int. Conf. on Intelligent Agents, Web Technologies and Internet Commerce, pp. 2-7, 2005.
- [22] I. K. Vlachos and D. G. Sergiadis, “Intuitionistic Fuzzy Information — Applications to Pattern Recognition,” in: Pattern Recognition Letters, Vol.28, pp. 197-206, 2006.
- [23] I. K. Vlachos and D. G. Sergiadis, “Hesitancy Histogram Equalization,” in: Proc. of FUZZ-IEEE 2007, pp. 1-6, 2007.
- [24] J. Goguen, “L-fuzzy sets,” in: Journal of Mathematical Analysis and Applications, Vol.18, pp. 145-174, 1967.
- [25] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using mathematical morphology,” in: IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.9, No.4, pp. 532-550, 1987.
- [26] C. Cornelis, G. Deschrijver, and E. E. Kerre, “Implication in Intuitionistic and Interval-valued Fuzzy Set Theory: Construction, Classification, Application,” in: Int. Journal of Approximate Reasoning, Vol.35, pp. 55-95, 2004.
- [27] G. Deschrijver, C. Cornelis, and E. E. Kerre, “On the Representation of Intuitionistic Fuzzy t-norms and t-conorms,” in: IEEE Transactions on Fuzzy Systems, Vol.12, No.1, pp. 45-61, 2004.
- [28] G. Deschrijver and C. Cornelis, “Representability in Interval-valued Fuzzy Set Theory,” in: Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol.15, No.3, pp. 345-361, 2007.
- [29] G. Deschrijver, “Arithmetic Operators in Interval-valued Fuzzy Set Theory,” in: Information Sciences, Vol.177, No.14, pp. 2906-2924, 2007.

This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.