Paper:
Human Resource Selection Based on Performance ClassificationUsingWeighted Support Vector Machine
Qiangwei Wang, Boyang Li, and Jinglu Hu
Graduate School of Information, Production and Systems, Waseda University,
2-7 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
- [1] D. Gary, “Human Resource Management (10th Edition),” Prentice Hall Press, 2005.
- [2] C. Alessandro and C. Guido., “An approach to the evaluation of human resources by using fuzzy set theory,” IEEE World Congress on Computational Intelligence., Proc. of the Third IEEE Conf. on Fuzzy Systems, Vol.2, pp. 1165-1170, 1994.
- [3] N. A. Ruskova, “Decision support system for human resources appraisal and selection,” Intelligent Systems, pp. 354-357, 2002.
- [4] V. Vapnik, “The nature of statistical learning theory,” Springer-Verlag, 1995.
- [5] W. Qiangwei, L. Boyang, and H. Jinglu, “Human Resource Selection Based on Performance Classification Using Weighted Support Vector Machine,” Joint 4th Int. Conf. on Soft Computing and Intelligent Systems and 9th Int. Symposium on advanced intelligent System (SCIS&ISIS), pp. 1837-1842, 2008.
- [6] W. Qiangwei, H. Jinglu, and Z. Yang, “Weighted Support Vector Machine with Combination Weighting Method for Human Resource Selection,” The 3rd Int. Symposium on Computational Intelligence and Industrial Applications (ISCIIA), pp. 405-413, 2008.
- [7] L. Chun-Fu and W. Sheng-De, “Fuzzy Support Vector Machine,” IEEE transactions on Neural Networks, Vol.13, No.2, pp. 464-471, 2002..
- [8] M. I. John, “Human Resource Management (9th Edition),” China Machine Press, 2004.
- [9] R. Alec, A. Wim, and G. Susan, “Measuring the relationship between managerial competencies and performance,” Journal of Management 2006; 32; 360, 2006.
- [10] G. Patty, “Hiring by competency models,” The journal for Quality and Participation, Winter 2006; 29,4, pp. 16-18, 2006.
- [11] L. M. Spencer, Jr. and S. M. Spencer, “Competence at work,” New York: John Wiley, 1993.
- [12] N. Bhushan and R. Kanwal, “Strategic decision making: applying the nalytic hierarchy process,” London: Springer-Verlag, ISBN 1-8523375-6-7, 2004.
- [13] S. L. Tung and S. L. Tang, “A comparison of the Saaty's AHP and modified AHP for right and left eigenvector inconsistency,” European Journal of Operational Research, ELSEVIER, pp. 123-128, 1998.
- [14] C. Cortes and V. Vapnik, “Support vector networks,” Machine learning, Vol.20, No.3, pp. 273-297, 1995.
- [15] D. Shu-Xin and C. Sheng-Tan, “Weighted support vector machine for classification, Systems,” Man and Cybernetics, 2005 IEEE Int. Conf., pp. 3866-3871, 2005.
- [16] Y. Xulei, S. Qing, and C. Aize, “Weighted support vector machine for data classification,” Int. Joint Conf. on Neural Networks, pp. 859-864, 2005.
- [17] J. Yinshan, J. Chuangying, and M. Heng, “Auto-weighted support vector machines for training sets with multi-duplicate samples,” ICSP'04, pp. 1447-1450, 2004.
- [18] P. Wenjuan, Y. Yong, L. Zhijing, and H. Weiyao, “Audio classification in a weighted SVM,” Communications and Information Technologies, 2007. ISCIT '07. Int. Symposium, pp. 468-472, 2007.
- [19] C. Leilei and W. Chengdong, “A fuzzy support vector machine based on geometric model,” World Congress on Intelligence Control and Automation, pp. 1843-1846, 2004.
- [20] Z. Xiang, X. Xiaoling, and X. Guangyong, “Fuzzy support vector machine based on affinity among samples,” Journal of Software, Vol.17, No.5, pp. 951-958, 2006.
- [21] Wikipedia, http://en.wikipedia.org/wiki/Standard_deviation
- [22] C.-C. Chang and C.-J. Lin , “LIBSVM: a library for support vector machine,” http://www.csie.ntu.tw/ cjlin/libsvm, 2007.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.