Paper:
Variable Ranking for Online Ensemble Learning
Hassab Elgawi Osman
Image Science and Engineering Lab, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- [1] L. Breiman, “Bagging predictors,” Machine Learning, Vol.24, No.2, pp. 123-140, 1996.
- [2] R. Schapire, Y. Freund, P. Bartlett, and W. Lee, “Boosting the margin: a new explanation for the effectiveness of voting methods,” Ann. Statist., Vol.26, No.5, pp. 1651-1686, 1998.
- [3] L. Breiman, “Random Forests,” Machine Learning, Vol.45, No.1, pp. 5-32, 2001.
- [4] H. Elgawi Osman, “Online Random Forests based on CorrFS and CorrBE,” in Proc. IEEE workshop on online classification, (CVPR'08), pp. 1-7, 2008.
- [5] H. Elgawi Osman, “Variable Ranking for Online Ensemble Learning,” in Proc. The 24th Annual ACM Symposium on Applied Computing (ACM SAC), 2009.
- [6] R. Kohavi and G. John, “Wrappers for feature subset selection,” Artifcial Intelligence, Vol.97, No. 1-2, pp. 273-324, 1997.
- [7] H. Liu, H. Motoda, and L. Yu, “A selective sampling approach to active feature selection,” Artificial Intelligence, Vol.159, No.1-2, pp. 49-74, 2004.
- [8] H. Motoda and H. Liu, “Data reduction: feature selection, Handbook of data mining and knowledge discovery,” Oxford University Press, Inc., New York, NY, 2002.
- [9] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Machine Learning Research, Vol.3, pp. 1157-1182, 2003.
- [10] S. Perkins, K. Lacker, and J. Theiler, “Grafting: fast, incremental feature selection by gradient descent in function space,” J. Machine Learning Research, Vol.3, pp. 1333-1356, 2003.
- [11] L. Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone, “Classification and regression trees,” Wadsworth Inc., Belmont, California, 1984.
- [12] R. E. Banfield, L. O. Hall, K. W. Bowyer, D. Bhadoria, W. P. Kegelmeyer, and S. Eschrich, “A comparison of ensemble creation techniques,” in Proc. Int. Conf. on Multiple Classifier Systems, 2004.
- [13] I. Guyon, “Design of experiments of the NIPS 2003 variable selection benchmark,” http://www.nipsfsc.ecs.soton.ac.uk/papers/Datasets.pdf, 2003.
- [14] I. H. Witten and E. Frank, “Data Mining: Practical Machine Learning Tools with Java Implementations,” Morgan Kaufmann, San Francisco, 1999.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.