Paper:
State Dependant Anytime Control Methodology for Non-Linear Systems
Annamária R. Várkonyi-Kóczy
Dept. of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar tudósok körútja 2. H-1521 Budapest, Hungary
- [1] J. J. Block and T. W. Strganac, “Applied active control for nonlinear aeroelastic structure,” Journal of Guidance, Control, and Dynamics, 0731-5090, Vol.21, No.6, pp. 838-845, 1996.
- [2] J. Ko, A. J. Kridula, and T. W. Strganac, “Nonlinear Control Theory for a Class of Structural Nonlinearities in a Prototypical Wing Section,” AIAA Papers 97-0580, pp. 1181-1189, 1997.
- [3] T. O’Neil, H. C. Gilliat, and T. W. Strganac, “Investigations of aeroelastic response for a system with continuous structural nonlinearities,” AIAA Papers 96-1390, 1996.
- [4] J. Ko, A. J. Kridula, and T. W. Strganac, “Nonlinear dynamics and control for a structurally nonlinear aeroelastic system,” AIAA Papers 97-1024, 1997.
- [5] W. W. Yim, S. N. Singh, and W. R. Wells, “Nonlinear Control of a Prototypical Aeroelastic Wing Section: State Dependant Riccati equation Method,” Proc. of the Int. Conf. on Nonlinear Problems in Aviation and Aerospace, FIT, Florida, 2002.
- [6] A. R. Várkonyi-Kóczy and T. Kovácsházy, “Anytime Algorithms in Embedded Signal Processing Systems,” Proc. of the IX. European Signal Processing Conference, EUSIPCO-98, Rhodes, Greece, Vol.1, pp. 169-172, Sep. 8-11, 1998.
- [7] C. Baron, J.-C. Geffroy, and G. Motet (Eds.), “Embedded System Applications,” Kluwer Academic Publishers, 1997.
- [8] P. Baranyi, “HOSVD based TP model transformation as a way to lmi based controller design,” IEEE Trans. on Industrial Electronics, Vol.51, No.2, pp. 387-400, April 2004.
- [9] K. Tanaka and H. O. Wang, “Fuzzy Control Systems Design and Analysis,” John Wiley & Sons, Inc. New York, 2001.
- [10] S. Zilberstein, “Using Anytime Algorithms in Intelligent Systems,” AI Magazine, Vol.17, No.3, pp. 73-83, 1996.
- [11] A. R. Várkonyi-Kóczy, T. Kovácsházy, O. Takács, and Cs. Benedecsik, “Anytime Algorithms in Intelligent Measurement and Control,” Proc. of the 2000 World Automation Congress, WAC’2000, Maui, USA, June 11-16, 2000.
- [12] A. R. Várkonyi-Kóczy, A. Ruano, P. Baranyi, and O. Takács, “Anytime Information Processing Based on Fuzzy and Neural Network Models,” Proc. of the 2001 IEEE Instrumentation and Measurement Technology Conference, IMTC/2001, Budapest, Hungary, pp. 1247-1252, May 21-23, 2001.
- [13] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory,” SIAM, Philadelphia, 1994.
- [14] L. D. Lathauwer, B. D. Moor, and J. Vanderwalle, “A Multi Linear Singular Value Decomposition,” SIAM Journal on Matrix Analysis and Applications, Vol.21, No.4, pp. 1253-1278, 2000.
- [15] D. Tikk, “On nowhere denseness of certain fuzzy controllers containing prerestricted number of rules,” Tatra Mountains Math. Publ., pp. 369-377, 1999.
- [16] Y. C. Fung, “An Introduction to the Theory of Aeroelasticity,” John Wiley and Sons, New York, 1955.
- [17] T. O’Neil and T. W. Strganac, “An Experimental Investigation of Nonlinear Aeroelastic Response,” AIAA Journal of Aircraft, Vol.35, No.4, pp. 616-622, Aug. 1998.
- [18] K. Tanaka, T. Ikeda, and H. O. Wang, “Robust Stabilization of a Class of Uncertain Nonlinear Systems via Fuzzy Control: Quadratic Stabilizability, H∞ Control Theory, and Matrix Inequalities,” IEEE Trans. on Fuzzy Systems, Vol.4, No.1, pp. 1-13, 1996.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.