Paper:
Support Vector Machine Classifier with WHM Offset for Unbalanced Data
Boyang Li, Jinglu Hu, and Kotaro Hirasawa
Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0135, Japan
- [1] N. Cristianini and J. Shawe-Taylor, “An Introduction to Support Vector Machines,” Cambridge, UK, Cambridge Univ. Press, 2000.
- [2] P. Bartlett and J. Shawe-Taylor, “Generalization performance of support vector machines and other pattern classifiers,” In Advances in Kernel Methods support Vector Learning, Cambridge, MA, MIT Press, 1998.
- [3] P. Xu and A. K. Chan, “Support vector machines for multi-class signal classification with unbalanced samples,” In Neural Networks, Proc. of the Int. Joint Conf. on Vol.2, Issue, pp. 20-24, July, 2003.
- [4] P. Xu and A. K. Chan, “Support vector machines for multi-class signal classification with unbalanced samples,” In Proc. of the Int. Joint Conf. on Neural Networks, 2003.
- [5] T. Eitrich and B. Lang, “Efficient optimization of support vector machine learning parameters for unbalanced datasets,” In Journal of Computational and Applied Mathematics, Vol.196, Issue 2, pp. 425-436, 2006.
- [6] S.-X. Du and S.-T. Chen, “Weighted Support Vector Machine for Classification,” In IEEE Int. Conf. on Systems, Man and Cybernetics, 2005.
- [7] J. Huang, J. Lin, X. He, and M. Dai, “The Algorithm for Detecting Hiding Information Based on SVM,” In Advances in Neural Networks - ISNN 2004, 2004.
- [8] O. Chapelle and V. Vapnik, “Model selection for Support Vector Machines,” In S. Solla, T. Leen, and K.-R. Müler (Eds.), Adv. Neural Inf. Proc. Syst. 12, Cambridge, MA, MIT Press, 2000.
- [9] Steve R. Gunn, “Support Vector Machines for Classification and Regression,” In Technical Report, Faculty of Engineering, Science and Mathematics School of Electronics and Computer Science, 10 May, 1998.
- [10] E. Osuna, R. Freund, and F. Girosi, “Support Vector Machines: Training and Applications,” In A.I. Memo 1602, MIT A.I.Lab., 1997.
- [11] Johan Suykens, “Least Squares Support Vector Machines,” In Tutorial IJCNN, 2003.
- [12] A. J. Smola and B. Schökopf, “On a kernel based method for pattern recognition, regression, approximation and operator inversion,” In Algorithmica, 22:211. 31, 1998, Technical Report 1064, GMD FIRST, April 1997.
- [13] C.-F. Lin and S.-D. Wang, “Fuzzy support vector machines,” In IEEE Trans on Neural Networks, Vol.13, No.2, pp. 464-471, 2002.
- [14] Y.-M. Huang and S.-X. Du, “Weighted Support Vector Machine for Classification with Uneven Training Class Sizes,” In ICMLC05, 2005.
- [15] D. Zhuang, B. Zhang, Q. Yang, J. Yan, Z. Chen, and Y. Chen, “Efficient text classification by weighted proximal SVM,” In Fifth IEEE Int. Conf. on Data Mining, pp. 27-30, Nov. 2005.
- [16] B. Li, J. Hu, K. Hirasawa, P. Sun, and K. Marko, “Support Vector Machine with Fuzzy Decision-Making for Real-world Data Classification,” In IEEE World Congress on Computational Intelligence 2006, Int. Joint Conf. on Neural Networks, Canada, 2006.
- [17] B. Li, J. Hu, and K. Hirasawa, “Fuzzy Decision-making SVM with An Offset for Real-world Lopsided Data Classification,” In SICEICASE Int. Joint Conf. 2006, Korea, 2006.
- [18] A. Asuncion and D. J. Newman, UCI Machine Learning Repository
[http://www.ics.uci.edu/˜mlearn/MLRepository.html],
Irvine, CA, University of California, Department of Information and Computer Science, 2007.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.