Paper:
A Global Optimization Method RasID-GA for Neural Network Training
Dongkyu Sohn, Shingo Mabu, Kaoru Shimada,
Kotaro Hirasawa, and Jinglu Hu
Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatus-ku, Kitakyushu-shi, Fukuoka, 808-0135, JAPAN
- [1] N. Baba, “A new approach for finding the global minimum of error function of neural networks,” Neural Networks, Vol.2, pp. 367-373, 1989.
- [2] N. Baba, “A hybrid algorithm for finding a global minimum,” Int. Journal of Control, Vol.37, pp. 929-942, 1983.
- [3] D. Sohn, H. Hatakeyama, S. Mabu, K. Hirasawa, and J. Hu, “Adaptive Random Search with Intensification and Diversification Combined with Genetic Algorithm,” Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol. 10, No. 6, pp. 954-963, 2006.
- [4] D. Sohn, K. Hirasawa, and J. Hu, “Adaptive Random Search with Intensification and Diversification combined with Genetic Algorithm,” Congress on Evolutionary Computation 2005 (CEC2005), pp. 1462-1469, 2005.
- [5] K. Hirasawa, H. Miyazaki, and J. Hu, “Enhancement of RasID and Its Evaluation,” T.SICE, Vol.38, No.9, pp. 775-783, 2002.
- [6] K. Hirasawa, K. Togo, J. Hu, M. Ohbayashi, and J. Murata, “A New Adaptive Random Search Method in Neural Networks –RasID–,” T.SICE, Vol.34, No.8, pp. 1088-1096, 1998.
- [7] J. Hu, K. Hirasawa, and J. Murata, “RasID-Random Search for Neural Network Training,” Journal of Advanced Computational Intelligence Informatics, Vol.2, No.4, pp. 134-141, 1998.
- [8] J. Hu and K. Hirasawa, “Adaptive random search approach to identification of neural network model,” Proc. of the 31st ISCIE Int. Symposium on Stochastic Systems Theory and its Applications, Yokohama, pp. 73-78, Nov. 11-12, 1999.
- [9] J. Holland, “Adaptation in Natural and Artificial System,” Ann Arbor, MIT University of Michigan Press, 1975.
- [10] P. A. Moscato, “On evolution, search, optimization, genetic algorithms and martial arts: Toward memetic algorithms,” Caltech Concurrent Computation program, California Institute of Technology, Pasadena, Tech. Rep. 790, 1989.
- [11] D. Molina, F. Herrera, and M. Lozano, “Adaptive Local Search Parameters for Real-Coded Memetic Algorithms,” Congress on Evolutionary Computation 2005 (CEC2005), pp. 888-895, 2005.
- [12] J. Matyas, “Random optimization,” Automation and Remote Control, Vol.26, pp. 244-251, 1965.
- [13] F. J. Solis and J. B. Wets, “Minimization by random search techniques,” Mathematics of Operations Research, Vol.6, pp. 19-30, 1981.
- [14] A. Torn and A. Zilinskas, “Global optimization,” in Lecture Notes in Computer Science, 350, Berlin Germany, Springer-Verlag, 1989.
- [15] T. Yamashita, K. Hirasawa, J. Hu, and J. Murata, “Multi-Branch Structure of Layered Neural Networks,” Int. Conf. on Neural Information Processing, pp. 243-247, Nov., 2002.
- [16] T. Yamashita, K. Hirasawa, and J. Hu, “Multi-Branch Structure and its Localized Property in Layered Neural Networks,” Proc. of IJCNN, pp. 1039-1044, 2004.
- [17] K. Hirasawa, X. Wang, J. Murata, J. Hu, and C. Jin, “Universal learning network and its application to chaos control,” Neural Networks, Vol.13, pp. 239-253, 2000.
- [18] K. Hirasawa, M. Ohbayashi, H. Fujita, and M. Koga, “Universal Learning Network Theory,” Trans. of Institute of Electrical Engineers of Japan, Vol.116-C, No.7, pp. 794-801, 1996.
- [19] M. Farzad, H. Tahersima, and H. Khaloozadeh, “Predicting the Mackey Glass Chaotic Time Series Using Genetic Algorithm,” SICE-ICASE Int. Joint Conf., pp. 5460-5463, Oct., 2006.
- [20] Z. Shi and M. Han, “Support Vector Echo-State Machine for ChaoticTime-Series Prediction,” IEEE trans. Neural Networks, Vol.18, No.2, pp. 359-372, Mar., 2007.
- [21] T. Kondo and J. Ueno, “Revised GMDH-Type Neural Network Algorithm with a Feedback Loop Identifying Sigmoid Function Neural Network,” Int. Journal of Innovative Computing, Information and Control, Vol.2, No.5, pp. 985-996, 2006.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.