Paper:
Comparison of Fractional Robust- and Fixed Point Transformations- Based Adaptive Compensation of Dynamic Friction
József K. Tar*, Imre J. Rudas*, and Béla Pátkai**
*Institute of Intelligent Engineering Systems, John von Neumann Faculty of Informatics, Budapest Tech, H-1034 Budapest, Bécsi út 96/B, Hungary
**Distributed Information and Automation Lab, Department of Engineering, University of Cambridge, Mill Lane, Cambridge CB2 1RX, UK
- [1] D. Hilbert, “Mathematische Probleme,” 2nd Int. Congress of Mathematicians, Paris, France, 1900.
- [2] V. I. Arnold, “Doklady Akademii Nauk USSR,” 114, pp. 679-681 (in Russian).
- [3] A. N. Kolmogorov, “Doklady Akademii Nauk USSR,” 114, pp. 953-956, (in Russian).
- [4] J. P. De Figueiredo, IEEE Tr. Autom. Control, Vol.25, Issue 6, pp. 1227-1231, 1980.
- [5] K. Hornik, M. Stinchcombe, and H. White, Neural Networks, Vol.2, pp. 359-366.
- [6] E. K. Blum and L. K. Li, Neural Networks, Vol.4, No.4, pp. 511-515, 1991.
- [7] V. Kurková, Neural Networks, Vol.5, pp. 501-506, 1992.
- [8] L. X. Wang, “Fuzzy systems are universal approximators,” Proc. of the IEEE Int. Conf. on Fuzzy Systems, San Diego, USA, California, Mar 8-12, 1992, pp. 1163-1169.
- [9] B. Kosko, IEEE Trans. on Computers, Vol.43, Issue 11, pp. 1329-1333, 1994.
- [10] J. L. Castro, IEEE Trans. on SMC, Vol.25, pp. 629-635, 1995.
- [11] B. Moser, Fuzzy Sets and Systems, Vol.104, No.2, pp. 269-277, 1999.
- [12] D. Tikk, Tatra Mountains Math. Publ., Vol.16, pp. 369-377, 1999.
- [13] E. P. Klement, L. T. Kóczy, and B. Moser, Int. J. General Systems, Vol.28, No.2, pp. 259-282, 1999.
- [14] D. Tikk, P. Baranyi, and J. Patton, “Polytopic and TS model are nowhere dense in the approximation model space,” Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics SMC 2002, Hammamet, Tunisia, October 6-9, pp. 150-153, 2002.
- [15] Gy. Schuster, “Fuzzy Approach of Backward Identification of Quasi-linear and Quasi-time-invariant Systems,” Proc. of the 11th Int. Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2002), June 30-July 2, 2002, Balatonfüred, Hungary, pp. 43-50.
- [16] Gy. Schuster, “Adaptive Fuzzy Control of Thread Testing Furnace,” Proc. of the ICCC 2003 IEEE Int. Conf. on Computational Cybernetics, August 29-31, Gold Coast, Lake Balaton, Siófok, Hungary, pp. 299-304.
- [17] Gy. Schuster, “Improved Method of Adaptive Fuzzy Control of a Thread Testing Furnace,” Proc. of the 2006 IEEE Int. Conf. on Computational Cybernetics (ICCC 2006), Tallinn, Estonia, August 20-22, 2006, pp. 125-129.
- [18] Gy. Hermann, “Application of Neural Network Based Sensor Fusion in Drill Monitoring,” Proc. of Symposium on Applied Machine Intelligence (SAMI 2003), Herl’any, Slovakia, pp. 11-24, February 12-14, 2003.
- [19] J. Tick and J. Fodor, “Some classes of binary operations in approximate reasoning,” Proc. of the 2005 IEEE Int. Conf. on Intelligent Engineering Systems (INES’05), September 16-19, 2005, pp. 123-128.
- [20] J. Tick and J. Fodor, “Fuzzy Implications and Inference Processes,” Computing and Informatics, Vol.24, No.6, pp. 591-602, 2005.
- [21] I. J. Rudas and M. O. Kaynak, Fuzzy Sets and Systems, Vol.98, No.1, pp. 83-94, 1998.
- [22] I. J. Rudas, Intl. Journal of Fuzzy Systems, Vol.2, Part 4, pp. 236-243, 2000.
- [23] K. Weierstraß, “Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des letzeren einen bestimmten Differentialquotienten besitzen,” A paper presented to the ‘Königliche Akademie der Wissenschaften’ on 18 of July 1872. English translation available in: On continuous functions of a real argument that do not have a well-defined differential quotient, in: G.A. Edgar, Classics on Fractals, Addison-Wesley Publishing Company, 1993, 3-9.
- [24] J. K. Tar, “Dynamic Nonlinear Control of Mechanical and Analogous Devices/Processes,” Invited plenary lecture at the IEEE Int. Conf. on Computational Cybernetics (ICCC 2006), Tallinn, Estonia, August 20-22, 2006.
- [25] J. K. Tar, I. J. Rudas, Á. Szeghegyi, and K. Kozłowski, “Novel Adaptive Control of Partially Modeled Dynamic Systems,” In “Lecture Notes in Control and Information Sciences,” Springer Berlin/Heidelberg, Robot Motion and Control: Recent Development, Part II – Control and Mechanical Systems, Krzysztof KozBłowski (Ed.), 335, pp. 99-111, 2006.
- [26] J. K. Tar, “Extension of the Modified Renormalization Transformation for the Adaptive Control of Negative Definite SISO Systems,” In the Proc. of the 2nd Romanian-Hungarian Joint Symposium on Applied Computational Intelligence (SACI 2005), May 12-14, 2005, Timişoara, Romania, pp. 447-457.
- [27] B. Armstrong-Hèlouvry, “Stick Slip and Control in Low Speed Motion,” IEEE Trans. On Automatic Control, Vol.38(10), pp. 1483-1496, October, 1990.
- [28] C. Caundas de Wit, H. Ollson, K. J. Åstrom, and P. Lischinsky, “A New Model for Control of Systems with Friction,” IEEE Trans. On Automatic Control, Vol.40(3), pp. 419-425, March, 1995.
- [29] C. Caundas de Wit, “Comments on “A New Model for Control of Systems with Friction”,” IEEE Trans. On Automatic Control, Vol.43(8), pp. 1189-1190, August, 1998.
- [30] J. A. Tenreiro Machado, “Fractional Calculus and Dynamical Systems,” invited plenary lecture at the IEEE Int. Conf. on Computational Cybernetics (ICCC 2006), Tallinn, Estonia, August 20-22, 2006.
- [31] S. Lacroix, “Traité du calcul differentiel et du calcul intégral,” Courciel, Paris, France, 1819.
- [32] J. Liouville, “Mémoire sur le calcul des différentielles a indices quelconcues,” J. Ecole Polytechn., Vol.13, pp. 71-162, 1832.
- [33] A. K. Grünwald, “Über ‘begrenzte’ Derivationen und deren Anwendung,” Zeitshrift für angewandte Mathematik und Physik, Vol.12, pp. 441-480, 1867.
- [34] A. Gemant, “Method of Analyzing Experimental Results Obtained from Elasto-Viscous Bodies,” Physics, Vol.7, pp. 311-317, 1936.
- [35] A. Gemant, “On Fractional Differentials,” The Phylosophical Magzine, Vol.25, pp. 540-549, 1938.
- [36] K. B. Oldham and J. Spanier, “The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order,” Academic Press, 1974.
- [37] K. S. Miller and B. Ross, “An Introduction to the Fractional Calculus and Fractional Differential Equations,” John Wiley and Sons, 1993.
- [38] I. Podlubny, “Fractional Differential Equations,” Academic Press, San Diego, 1999.
- [39] P. J. Torvik and R. L. Bagley, “On the Appearance of the Fractional Derivative in the Behaviour of Real Materials,” ASME Journal of Applied Mechanics, Vol.51, pp. 294-298, 1984.
- [40] C. G. Koh and J. M. Kelly, “Application of Fractional Derivatives to Seismic Analysis of Base-isolated Models,” Earthquake Engineering and Structural Dynamics, Vol.19, pp. 229-241, 1990.
- [41] J. Machado and A. Azenha, “Fractional-order hybrid control of robot manipulators,” IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 788-793, 1998.
- [42] O. P. Agrawal, “Solution for a Fractional Diffusion-wave Equation in a Bounded Domain,” Nonlinear Dynamics, Vol.29, pp. 145-155, 2002.
- [43] T. Roska, “Development of Kilo Real-time Frame Rate TeraOPS Computational Capacity Topographic Microprocessors,” Plenary Lecture at 10th Int. Conf. on Advanced Robotics (ICAR 2001), Budapest, Hungary, August 22-25, 2001.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.