Paper:

# Dyadic Curvelet Transform (DClet) for Image Noise Reduction

## Marjan Sedighi Anaraki^{*}, Fangyan Dong^{*},

Hajime Nobuhara^{**}, and Kaoru Hirota^{*}

^{*}Dept. of Computational Intelligence and Systems Science, Tokyo Institute of Technology, G3-49, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

^{**}Dept. of Intelligent Interaction Technologies, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba science city, Ibaraki 305-8573, Japan

*J. Adv. Comput. Intell. Intell. Inform.*, Vol.11 No.6, pp. 641-647, 2007.

- [1] M. N. Do and M. Vetterli, “The Contourlet Transform: an Efficient Directional Multiresolution Image Representation,” IEEE Trans. on Image Processing, 14-12, pp. 2091-2106, 2005.
- [2] D. D. -Y. Po and M. N. Do, “Directional Multiscale Modeling of Images using the Contourlet Transform,” IEEE Trans. on Image Processing, 15-6, pp. 1610-1620, 2006.
- [3] D. L. Donoho and M. R. Duncan, “Digital Curvelet Transform: Strategy, Implementation and Experiments,” Proc. SPIE, Vol.4056, pp. 12-29, 2000.
- [4] J. L. Starck, F. Murtagh, E. J. Candes, and D. L. Donoho, “Gray and Color Image Contrast Enhancement by the Curvelet Transform,” IEEE Trans. on Image Processing, 12-6, pp. 706-717, 2003.
- [5] F. J. Herrmann, “Curvelet Imaging and Processing: an Overview,” CSEG National Convention, 2004.
- [6] E. J. Candes, “What Is A Curvelet?,” Notice of the AMS, 50-11, pp. 1402-1403.
- [7] E. J. Candes and D. L. Donoho, “Curvelets Multiresolution Representation, and Scaling Laws,”

http:www.acm.caltech.edu/˜emmanuel/papers/SPIE_Curvelets.pdf - [8] E. Candes and D. Donoho, “New Tight Frams of Curvelets and Optimal Representations of Objects with Piecewise-C2 Singularities,” Commun. on Pure and Appl. Math., 57, pp. 219-266, 2004.
- [9] E. J. Candes and D. L. Donoho, “Ridgelets, A Key to Higher Dimensional Intermittency?,” Phil. Trans. Royal Society London, 1999.
- [10] E. J. Candes and D. L. Donoho, “Curvelet A Surprisingly Effective Nanadaptation for Objects with Edges,” Curve and Surface Filtering, Saint-Malo, 1999.
- [11] M. N. Do and M. Vetterli, “The Finite Ridgelet Transform for Image Representation,” IEEE Trans. on Image Processing, 12-1, pp. 16-28, 2003.
- [12] M. N. Do and M. Vetterli, “The Finite Ridgelet Transform for Image Representation,” IEEE Trans. on Image Processing, IP EDICS: 2-WAVP (Wavelets and Multiresolution Processing), 2001.
- [13] F. Matus and J. Flusser, “The Image Representations via a Finite Radon Transform,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 15-10, pp. 996-1006, 1993.
- [14] E. D. Bolker, S. Helgason, R. L. Bryant, V. Guillemin, and R. O. Wells Jr. (Eds.), “The Finite Radon Transform,” Internal Geometry, Contemporary Mathematics, 63, pp. 27-50, 1987.
- [15] G. Beylkin, “Discrete Radon Transform,” IEEE Trans. on Acoustic and Speech Signal Processing, 35, pp. 162-172, 1987.
- [16] R. Rangarajan, R. Kataramanan, and S. Shah, “Image De-noising using Wavelet,” 2002.

http://www-personal.engin.umich.edu/˜sidshah/projects/denoise.pdf - [17] E. Bala and A. Ertuzun, “Application of Multiwavelet Techniques to Image Denoising,” IEEE ICIP 2002, III581-584.
- [18] J. L. Starck, E. J. Candes, and D. L. Donoho, “The Curvelet Transform for Image De-noising,” 2000.

http://www.acm.caltech.edu/˜emmanuel/papers/CurveDenoise.pdf - [19] J. L. Starck, E. J. Candes, and D. L. Donoho, “The Curvelet Transform for Image Denoising,” IEEE, Transaction on Image Processing, 11-6, pp. 670-684, 2002.
- [20] E. Candes, L. Demanet, D. Donoho, and L. Ying, “Fast Discrete Curvelet Transforms,” 2005.

http://www.acm.caltech.edu/˜demanet/papers/FDCT.pdf

This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.