Paper:

# Improved Estimation of Embedding Parameters of Nonlinear Time Series by Structural Learning of Neural Network with Fuzzy Regularizer

## Yusuke Manabe and Basabi Chakraborty

Graduate School of Software and Information Science, Iwate Prefectural University, 152-52 Sugo, Takizawa-mura, Iwate 020-0193, Japan

*J. Adv. Comput. Intell. Intell. Inform.*, Vol.11 No.6, pp. 600-609, 2007.

- [1] F. Takens, “Detecting strange attractors in turbulence,” In Lecture notes in mathematics, Vol.898, Dynamical systems and turbulence, pp. 366-381, Springer, 1981.
- [2] H. D. I. Abarbanel, Analysis of observed chaotic data, Springer-Verlag, New York, 1996.
- [3] R. Reed, “Pruning Algorithms – A Survey,” IEEE Trans. on Neural Networks, Vol.4, No.5, pp. 740-747, 1993.
- [4] J. Sietsma and R. J. F. Dow, “Creating Artificial Neural Networks That Generalize,” Neural Networks, Vol.4, pp. 67-79, 1991.
- [5] M. Ishikawa, “Structural Learning with Forgetting,” Neural Networks, Vol.9, No.3, pp. 509-521, 1996.
- [6] S. Kikuchi and M. Nakanishi, “Recurrent neural network with short-term memory and fast structural learning method,” Systems and Computers in Japan, Vol.34, No.6, pp. 69-79, 2003.
- [7] T. Matsui, T. Iizaka, and Y. Fukuyama, “Peak load forecasting using analyzable structured neural network,” IEEE Power Engineering Society Winter Meeting, pp. 405-410, 2001.
- [8] Y. Manabe, B. Chakraborty, and H. Fujita, “Structural Learning of Multilayer Feed Forward Neural Networks for Continuous Valued Functions,” in Proceedings of IEEE-MWSCAS 2004, pp. III77-III80, July, 2004.
- [9] B. Chakraborty and Y. Manabe, “Structural Learning of Neural Network for Continuous Valued Output: Effect of Penalty Term to Hidden Units,” in Lecture Notes in Computer Science 3316, Springer, pp. 599-605, 2004.
- [10] D. J. C. MacKay, “Bayesian non-linear modeling for the energy prediction competition,” ASHRAE Transactions, Vol.100, Part 2, pp. 1053-1062, 1994.
- [11] R. M. Neal, “Bayesian learning for neural networks,” Springer-Verlag, New York, 1996.
- [12] V. N. Vapnik, “The Nature of Statistical Learning Theory,” Springer, 1995.
- [13] D. J. C. MacKay, “Bayesian interpolation,” Neural Computation, Vol.4, pp. 415-447, 1992.
- [14] Y. Manabe and B. Chakraborty, “Estimating Embedding Parameters using Structural Learning of Neural Network,” IEEE International Workshop on NSIP 2005, Sapporo, Japan, May, 2005.
- [15] Y. Manabe and B. Chakraborty, “Estimation of Embedding Parameters by Neural Network with Pruning Algorithm,” Technical Report of IEICE, Vol.105, No.206, pp. 45-50, July, 2005 (in Japanese).
- [16] Y. Manabe and B. Chakraborty, “A Novel Approach for Estimation of Optimal Embedding Parameters of Nonlinear Time Series by Structural Learning of Neural Network,” Neurocomputing, Vol.70, issue 7-9, pp. 1360-1371, March 2007.
- [17] K. Alligood, T. Sauer, and J. A. Yorke, “Chaos: An Introduction to Dynamical Systems,” Springer-Verlag, New York, 1997.
- [18] H. Kantz and T. Schreiber, “Nonlinear Time Series Analysis,” Cambridge University Press, 1997.
- [19] A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual information,” Phys. Rev. A, Vol.33, pp. 1134-1140, 1986.
- [20] M. B. Kennel, “Determining embedding dimension for phase-space reconstruction using a geometrical construction,” Phys. Rev. A, Vol.45, pp. 3403-3411, 1992.
- [21] A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P. E. Rapp, “Singular-value decomposition and the Grassberger-Procaccia algorithm,” Phys. Rev. A, Vol.38, pp. 3017-3026, 1988.
- [22] J. C. Principe, L. Wang, and M. A. Motter, “Local Dynamic Modelmodeling with Self-Organizing Maps and Applications to Nonlinear System Identification and Control,” Proceedings of the IEEE, Vol.86, No.11. pp. 2240-2258, November 1998.
- [23] C. J. Cellucci, A. M. Albano, and P. E. Rapp, “Comparative Study of Embedding Methods,” Phys. Rev. E, Vol.67, 066210-1-13, 2003.
- [24] S. Kim, R. Eykholt, and J. D. Salas, “Delay time window and plateau onset of the correlation for small data sets,” Phys. Rev. E, Vol.58, pp. 5676-5682, 1998.
- [25] K. Judd and A. Mees, “Embedding as a Modelling Problem,” Physica D, Vol.120, pp. 273-286, 1998.
- [26] M. Small and C. K. Tse, “Optimal embedding parameters: a modelling paradigm,” Physica D, Vol.194, pp. 283-296, 2004.
- [27] K. Judd, M. Small, and A. I. Mees, “Achieving Good Nonlinear Models: Keep it Simple, Vary the Embedding, and Get the Dynamics Right,” in Nonlinear Dynamics and Statistics, Ed., A. I. Mees, pp. 65-80, Birkhauser Boston, 2001.
- [28] T. Matsumoto, Y. Nakajima, M. Saito, J. Sugi, and H. Hamagishi, “Reconstructions and Predictions of Nonlinear Dynamical Systems: A Hierarchical Bayesian Approach,” IEEE Trans. on Signal Processing, Vol.49, No.9, pp. 2138-2155, 2001.
- [29] R. Hegger, H. Kantz, and T. Schreiber, “Practical implementation of nonlinear time series methods: the TISEAN package,” CHAOS 9, pp. 413-435, 1999.
- [30] Time Series Data Library,

http://www-personal.buseco.monash.edu.au/˜hyndman/TSDL/

This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.