Paper:
Unsupervised and Semi-Supervised Graph-Spectral Algorithms for Robust Extraction of Arbitrarily Shaped Fuzzy Clusters
Weiwei Du and Kiichi Urahama
Department of Visual Communication Design, Kyushu University, 4-9-1 Shiobaru, Fukuoka 815-8540, Japan
- [1] M. I. Ng, N. I. Jordan, and Y. Weiss, “On spectral clustering: analysis and an algorithm,” NIPS, pp. 849-856, 2002.
- [2] Z. Zhu, Z. Ghahrmani, and J. D. Lafferty, “Semi-supervised learning using Gaussian fields and harmonic functions,” ICML, pp. 912-919, 2003.
- [3] D. Zhou, B. Scholkopf, and T. Hofmann, “Semi-supervised learning on directed graphs,” NIPS, pp. 1633-1640, 2005.
- [4] W. Pedrycz, “Knowledge-based clustering: from data to information granules,” Wiley, 2005.
- [5] K. Wagstaff, C. Cardie, S. Rogers, and S. Shroedl, “Constrained k -means clustering with background knowledge,” ICML, pp. 577-584, 2001.
- [6] B. Kulis, S. Basu, I. Dhillon, and R. Mooney, “Semi-supervised graph clustering: a kernel approach,” ICML, pp. 457-464, 2005.
- [7] S. Hotta, K. Inoue, and K. Urahama, “Extraction of fuzzy clusters from weighted graphs,” PACDD, pp. 442-453, 2000.
- [8] K. Inoue and K. Urahama, “Sequential fuzzy cluster extraction by a graph spectral method,” Patt. Recog. Lett., 20, pp. 699-705, 1999.
- [9] J. C. Bezdek, “Pattern recognition with fuzzy objective function algorithms,” Plenum Pub Corp, 1981.
- [10] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang, “Manifold-ranking based image retrieval,” ACM MM, pp. 9-16, 2004.
- [11] J. M. Kleinberg, “Authritative sources in hyperlinked environment,” J. ACM, Vol.46, pp. 604-632, 1999.
- [12] M. Swain and D. Ballard, “Colour indexing,” Int. J. Comput. Vision, 7, pp. 11-32, 1991.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.