Paper:
Optimization Method RasID-GA for Numerical Constrained Optimization Problems
Dongkyu Sohn, Shingo Mabu, Kotaro Hirasawa, and Jinglu Hu
Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0135, Japan
- [1] J. Matyas, “Random optimization,” Automation and Remote Control, Vol.26, pp. 244-251, 1965.
- [2] F. J. Solis and J. B. Wets, “Minimization by random search techniques,” Mathematics of Operations Research, Vol.6, pp. 19-30, 1981.
- [3] A. Torn and A. Zilinskas, “Global optimization,” in Lecture Notes in Computer Science, 350, Berlin Germany, Springer-Verlag, 1989.
- [4] K. Hirasawa, H. Miyazaki, and J. Hu, “Enhancement of RasID and Its Evaluation,” T.SICE, Vol.38, No.9, pp. 775-783, 2002.
- [5] K. Hirasawa, K. Togo, J. Hu, M. Ohbayashi, and J. Murata, “A New Adaptive Random Search Method in Neural Networks –RasID–,” T.SICE, Vol.34, No.8, pp. 1088-1096, 1998.
- [6] J. Hu, K. Hirasawa, and J. Murata, “RasID-Random Search for Neural Network Training,” Journal of Advanced Computational Intelligence, Vol.2, No.4, pp. 134-141, 1998.
- [7] J. Hu and K. Hirasawa, “Adaptive random search approach to identification of neural network model,” Proceedings of the 31st ISCIE international symposium on stochastic systems theory and its applications, Yokohama, pp. 73-78, Nov. 11-12, 1999.
- [8] Y. W. Leung and Y. Wang, “An orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization,” IEEE Tran. on Evolutionary Computation, Vol.5, No.1, pp. 41-53, 2001.
- [9] P. A. Moscato, “On evolution, search, optimization, genetic algorithms and maritial arts,” Toward memetic algorithms, Caltech Concurrent Computation program, California Institute of Technology, Pasadena, Tech. Rep.790, 1989.
- [10] J. Holland, “Adaptation in Natural and Artificial System,” Ann Arbor, University of Michigan Press, 1975; MIT Press, 1992.
- [11] J. E. Baker, “Adaptive selection methods for genetic algorithms,” in Proc. of the first International Conference on Genetic Algorithms, pp. 101-111, 1985.
- [12] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithm: Motivation analysis, and first results,” Complex Systems, Vol.3, pp. 493-530, 1989.
- [13] D. Molina, F. Herrera, and M. Lozano, “Adaptive Local Search Parameters for Real-Coded Memetic Algorithms,” Congress on Evolutionary Computation 2005 (CEC2005), pp. 888-895, 2005.
- [14] X. Yao and Y. Liu, “Fast evolution strategies,” in Evolutionary Programming VI, P. J. Angeline, R. Reynolds, J. McDonnell, and R. Eberhart (Eds.), Berlin, Germany, Springer-Verlag, pp. 151-161, 1997.
- [15] T. P. Runarsson and X. Yao, “Stochastic Ranking for Constrained Evolutionary Optimization,” IEEE Tran. on Evolutionary Computation, Vol.4, No.3, pp. 284-294, 2000.
- [16] D. Sohn, K. Hirasawa, and J. Hu, “Adaptive Random Search with Intensification and Diversification combined with Genetic Algorithm,” Congress on Evolutionary Computation 2005 (CEC2005), pp. 1462-1469, 2005.
- [17] S. Tsutsui and D. E. Goldberg, “Simplex Crossover and Linkage Identification: Single-Stage Evolution VS. Multi-Stage Evolution,” Proceedings of the 2002 Congress on Evolutionary Computation (CEC’02), pp. 974-979, 2002.
- [18] S. Tsutsui, M. Yamamura, and T. Higuchi, “Multi-parent Recombination with Simplex Crossover in Real Coded Genetic Algorithms,” Proceedings of the 1999 Genetic and Evolutionary Computation Conference (GECCO-99), pp. 657-664, 1999.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.