Paper:
Classification of Liver Disease from CT Images Using a Support Vector Machine
Chien-Cheng Lee*, Sz-Han Chen*, and Yu-Chun Chiang**
*Department of Communications Engineering, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
**Department of Mechanical Engineering, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
- [1] B. B. Gosnik, S. K. Lemon, W. Scheible, and G. R. Leupold “Accuracy of ultrasonography in diagnosis of hepatocellular disease,” AJR, Vol.133, pp. 19-23, 1979.
- [2] K. J. Foster, K. C. Dewbury, A. H. Griffith, and R. Wright, “The accuracy of ultrasound in the detection of fatty infiltration of the liver,” Br. J. Radiol., Vol.53, pp. 440-442, 1980.
- [3] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man. Cybern., Vol.SMC-3, No.6, pp. 610-621, Jun., 1973.
- [4] B. S. Manjunath and W. Y. Ma, “Texture features for browsing and retrieval of image data,” IEEE Trans. Pattern Anal. Machine Intell., Vol.18, No.8, pp. 837-842, Aug., 1996.
- [5] D. A. Clausi and M. E. Jernigan, “Designing Gabor filters for optimal texture separability,” Pattern Recognit., Vol.33, pp. 1835-1849, 2000.
- [6] A. Kumar and G. K. H. Pang, “Defect detection in texture materials using Gabor filters,” IEEE Trans. Ind. Applicat., Vol.38, No.2, pp. 425-440, Mar./Apr., 2002.
- [7] P. Rivaz and N. Kingsbury, “Fast segmentation using level set curves of complex wavelet surfaces,” in Proc. IEEE Int. Conf. on Image Processing, Vancouver, BC, Canada, pp. 592-595, Sep., 2000.
- [8] Y. M. Kadah, A. A. Farag, J. M. Zurada, A. M. Badawi, and A.-B. M. Youssef, “Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images,” IEEE Trans. Medical Imaging, Vol.15, No.4, pp. 466-478, Aug., 1996.
- [9] Y. N. Sun, M.-H. Horng, X.-Z. Lin, and J.-Y. Wang, “Ultrasound image analysis for liver diagnosis: A noninvasive alternative to determine liver disease,” IEEE Eng. Med. Biol. Mag., pp. 93-101, Nov./Dec., 1996.
- [10] E.-L. Chen, P.-C. Chung, C.-L. Chen, H.-M. Tsai, and C.-I. Chang, “An automatic diagnostic system for CT liver image classification,” IEEE Trans. Biomedical Engineering, Vol.45, No.6, pp. 783-794, Jun., 1998.
- [11] M. Gletsos et al., “A computer-aided diagnostic system to characterize CT focal liver eesions: design and optimization of a neural network classifier,” IEEE Transactions on Information Technology in Biomedicine, Vol.7, No.3, pp. 153-162, Sep., 2003.
- [12] B. Schölkopf, K.-K. Sung, C. J. C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik, “Comparing support vector machines with Gaussian kernels to radial basis function classifiers,” IEEE Trans. Signal Processing, Vol.45, No.11, pp. 2758-2765, Nov., 1997.
- [13] V. Vapnik, “The Nature of Statistical Learning Theory,” New York: Springer-Verlag, 1995.
- [14] K. I. Kim, K. Jung, S. H. Park, and H. J. Kim, “Support vector machines for texture classification,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.24, No.11, pp. 1542-1550, Nov., 2002.
- [15] M. Sonka, V. Hlavac, and R. Boyle, “Image Processing, Analysis and Machine Vision,” New York, Chapman and Hall, 1993.
- [16] W. K. Pratt, “Digital Image Processing,” New York, Wiley, 2001.
- [17] C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Trans Neural Networks, Vol.13, No.2, pp. 415-425, Nov., 2002.
- [18] D. Anguita, S. Ridella, and D. Sterpi, “A new method for multiclass support vector machines,” in Proc. of IEEE Int. Joint Conf. on neural networks, IJCNN 2004, Budapest, Hungary, pp. 25-29, July, 2004.
- [19] C. C. Chang and C. J. Lin, “Libsvm: a library for support vector machines,” 2001, available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.