Paper:

# Optimal Size Fuzzy Models

## Tamás D. Gedeon^{*}, László T. Kóczy^{**}, and Alessandro Zorat^{***}

^{*}Dept. of Computer Science, Australian National University, Canberra 0200, Australia

^{**}Dept. of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Sztocek u. 2, H-1111 Budapest, Hungary

^{***}Dept. of Information and Communication Technologies, University of Trento, Via Sommarive 14, Povo, I-38100 Italy

*J. Adv. Comput. Intell. Intell. Inform.*, Vol.11 No.3, pp. 335-341, 2007.

- [1] D. G. Burkhardt and P. P. Bonissone, “Automated fuzzy knowledge base generation and tuning,” IEEE Int. Conf. on Fuzzy Systems, San Diego, pp. 179-196, 1992.
- [2] J. L. Castro, “Fuzzy logic controllers are universal approximators,” IEEE Tr. on SMC 25, pp. 629-635, 1995.
- [3] D. Drinkov, H. Hellendoorn, and M. Reinfrank, “An Introduction to Fuzzy Control,” Springer, Berlin, etc., 1993.
- [4] L. T. Kóczy, “Compression of fuzzy rule bases by interpolation,” Proceedings of the First Asian Fuzzy Systems Symposium, Singapore, pp. 500-507, 1993.
- [5] L. T. Kóczy, A. Zorat, and T. D. Gedeon, “The Cat and Mouse Problem – optimising the size of fuzzy rule bases,” Proceedings of CIFT’95, Trento, pp. 139-151, 1995.
- [6] W. Pedrycz, “Fuzzy Control and Fuzzy Systems,” 2nd edition, J. Wiley, Chichester, 1992.
- [7] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative modelling,” IEEE Tr. on Fuzzy Systems 1, pp. 7-31, 1993.
- [8] L. X. Wang, “Adaptive Fuzzy Systems and Control,” Prentice Hall, Englewood Cliffs, N.J., 1994.
- [9] R. Yager and D. Filev, “Essentials of Fuzzy Modelling and Control,” J. Wiley, Chichester, 2004.

This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.