Paper:
An Approach in Designing Hierarchy of Fuzzy Behaviors for Mobile Robot Navigation
Long Thanh Ngo*, Long The Pham*, Phuong Hoang Nguyen**,
and Kaoru Hirota***
*Center of Simulation Technology, Le Quy Don Technical University, 100-Hoang Quoc Viet Rd., Cau Giay Dist., Hanoi, Vietnam
**Center of Health Information Technology, Ministry of Health, 3-Phuong Mai St., Dong Da Dist., Hanoi, Vietnam
***Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, G3-49, 4259 Nagatsuta, Modori-ku, Yokohama 226-8502, Japan
- [1] R. A. Brooks, “A Robust Layer Control System for a Mobile Robot,” IEEE Journal of Robotics and Automation, Vol.2, No.1, pp. 14-23, 1986.
- [2] C. Ye and D. Wang, “A Novel Behavior Fusion Method for the Navigation of Mobile Robots,” Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Nashville, TN, 2001, pp. 3526-3531.
- [3] S. Thongchai, S. Suksakulchai, D. M. Wilkes, and N. Sarkar, “Sonar Behavior-Based Fuzzy Control for a Mobile Robot,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2000.
- [4] J. Yen and N. Pfluger, “A fuzzy logic based extension to Payton and Rosenblatt’s command fusion method for mobile robot navigation,” IEEE Trans. Systems, Man and Cybernetics, 25(6), pp. 971-978, 1995.
- [5] P. Matsakis and L. Wendling, “A New Way to Represent the Relative Position of Areal Objects,” PAMI (IEEE Trans. on Pattern Analysis and Machine Intelligence), Vol.21, No.7, pp. 634-643, 1999.
- [6] R. Bondugula, P. Matsakis, and J. Keller, “Force Histograms and Neural Networks for Human-Based Spatial Relationship Generalization,” NCI 2004 (IASTED Int. Conf. on Neural Networks and Computational Intelligence), Grindelwald, Switzerland, February 2004, Proceedings.
- [7] M. Skubic, P. Matsakis, G. Chronis, and J. Keller, “Generating Multi-level Linguistic Spatial Descriptions from Range Sensor Readings Using the Histogram of Forces,” Autonomous Robots, Vol.14, No.1, pp. 51-69, 2003.
- [8] K. Miyajima and A. Ralescu, “Spatial organization in 2D segmented images: representation and recognition of primitive spatial relations,” Fuzzy Sets and Systems, 65(2/3), pp. 225-236, 1994.
- [9] L. T. Ngo, L. T. Pham, P. H. Nguyen, and K. Hirota, “Extending fuzzy directional relationship and applying for mobile robot collision avoidance behavior,” International Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.10, No.4, pp. 444-450, 2006.
- [10] D. Payton, J. Rosenblatt, and D. Keirsey, “Plan Guided Reaction,” IEEE Trans. System, Man and Cybernetics, Vol.20, No.6, pp. 1370-1382, Nov., 1990.
- [11] P. Rusu, E. M. Petriu, T. E. Whalen, A. Cornell, and H. J. W. Spoelder, “Behavior-Based Neuro-Fuzzy Controller for Mobile Robot Navigation,” IEEE Trans. on Instrumentation and Measurement, Vol.52, No.4, pp. 1135-1140, 2003.
- [12] A. Saffiotti, “Fuzzy Logic in Autonomous Robotics: Behavior Coordination,” In Proceedings of the IEEE International Conference on Fuzzy Systems, Bercelona, Spain, pp. 573-578, July, 1997.
- [13] F. Hoffmann, “An Overview on Soft Computing in Behavior Based Robotics,” IFSA 2003, pp. 544-551.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.