Paper:
Feed-Forward Neural Networks Based on the Eigenstates of the Quantum Harmonic Oscillator
Gerasimos Rigatos
Unit of Industrial Automation, Industrial Systems Institute, 26504, Rion Patras, Greece
- [1] C. Cohen-Tannoudji, B. Diu, and F. Laloë, “Mécanique Quantique I,” Hermann, 1998.
- [2] W. A. Strauss, “Partial Differential Equations: An Introduction,” J. Wiley, 1992.
- [3] B. Kosko, “Neural networks and fuzzy systems: A dynamical systems approach to machine intelligence,” Prentice Hall, 1992.
- [4] D. Ventura, and T. Martinez, “Quantum Associative Memory,” Information Sciences, Elsevier, Vol.124, No.1-4, pp. 273-296, 2000.
- [5] G. Resconi, and A. J. Van der Waal, “Morphogenic neural networks encode abstract rules by data,” Information Sciences, Elsevier, pp. 249-273, 2002.
- [6] M. Perus, “Multi-level Synergetic Computation in Brain,” Nonlinear Phenomena in Complex Systems, Vol.4, No.2, pp. 157-193, 2001.
- [7] G. G. Rigatos, and S. G. Tzafestas, “Parallelization of a fuzzy control algorithm using quantum computation,” IEEE Transactions on Fuzzy Systems, Vol.10, No.4, pp. 451-460, 2002.
- [8] G. G. Rigatos, and S. G. Tzafestas, “Fuzzy learning compatible with quantum mechanics postulates,” Computational Intelligence and Natural Computation, CINC’03, North Carolina, 2003.
- [9] A. Refregier, “Shapelets – I. A method for image analysis,” Mon. Not. R. Astron. Soc., Vol.338, pp. 35-47, 2003.
- [10] S. Haykin, “Neural Networks: A Comprehensive Foundation,” McMillan, 1994.
- [11] L. Ma, and K. Khorasani, “Constructive Feedforward Neural Networks Using Hermite Polynomial Activation Functions,” IEEE Transactions on Neural Networks, Vol.16, No.4, pp. 821-833, 2005.
- [12] L. Ma, and K. Khorasani, “Application of Adaptive Constructive Neural Networks to Image Compression,” IEEE Transactions on Neural Networks, Vol.13, No.5, pp. 1112-1125, 2002.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.