single-jc.php

JACIII Vol.10 No.2 pp. 150-154
doi: 10.20965/jaciii.2006.p0150
(2006)

Paper:

Novel Approach to Determining Camera Motion Parameters

Ken-ichi Sakina

Department of Computer Engineering, Hakodate National College of Technology, 14-1 Tokuracho, Hakodate, Hokkaido 042-8501, Japan

Received:
January 31, 2005
Accepted:
November 7, 2005
Published:
March 20, 2006
Keywords:
camera motion parameters, complex number expression for rotation matrix, visual navigation
Abstract

We discuss the expression of space rotation in terms of complex numbers and present explicit formulas for computing the direction of the rotation axis and angle. These formulas are applied to determining camera motion parameters from two perspective views. Our approach requires only 3 space points and their physical distances from the camera to determine motion parameters. We compare the proposed method with other methods and check it numerically.

Cite this article as:
Ken-ichi Sakina, “Novel Approach to Determining Camera Motion Parameters,” J. Adv. Comput. Intell. Intell. Inform., Vol.10, No.2, pp. 150-154, 2006.
Data files:
References
  1. [1] R. Y. Tsai, and T. S. Huang, “Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces,” IEEE Trans. Pattern Anal. Machine Intell., Vol.PAMI-6, No.1, pp. 13-27, Jan., 1984.
  2. [2] X. Zhuang, and T. S. Huang, “Two-view motion analysis: a unified algorithm,” Journal of optical Society of America, Vol.A-3, No.9, pp. 1492-1500, 1986.
  3. [3] Y. C. Liu, T. S. Huang, and O. D. Faugeras, “Determination of camera location from 2-D to 3-D line and point correspondences,” IEEE Trans. Pattern Anal. Machine Intell., Vol.12, No.1, pp. 28-37, Jan., 1990.
  4. [4] J. Weng, T. S. Huang, and N. Ahuja, “Motion and structure from two perspective views: Algorithms, error analysis, and error estimation,” IEEE Trans. Pattern Anal. Machine Intell., Vol.11, No.5, pp. 451-467, 1989.
  5. [5] J. Weng, N. Ahuja, and T. S. Huang, “Optimal motion and structure estimation,” IEEE Trans. Pattern Anal. Machine Intell., Vol.15, No.9, pp. 864-884, 1993.
  6. [6] H. Goldstein, “Classical mechanics,” 2nd ed, pp. 110-118, Addison-Wesley, 1980.
  7. [7] R. Penrose, and W. Rindler, “Spinors and space-time,” pp. 10-21, Cambridge Univ. Press, 1984.
  8. [8] G. Xu, and Z. Zhang, “Epipolar geometry in stereo, motion and object recognition,” Kluwer Academic Publisher, 1996.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 05, 2021