single-jc.php

JACIII Vol.9 No.3 pp. 244-256
doi: 10.20965/jaciii.2005.p0244
(2005)

Paper:

A Fully Automated Breast Cancer Recognition System Using Discrete-Gradient Based Clustering and Multi Category Feature Selection

Ranadhir Ghosh, Moumita Ghosh, and John Yearwood

School of Information Technology and Mathematical Sciences, niversity of Ballarat, PO Box 663, Ballarat, Victoria 3353, Australia

Received:
October 30, 2004
Accepted:
March 8, 2005
Published:
May 20, 2005
Keywords:
multi-category based feature selection, hybrid classifier, cancer recognition system
Abstract
Advances in machine intelligence have provided a whole new window of opportunities in medical research. Building a fully automated computer aided diagnostic system for digital mammograms is just one of them. Given some success with semi-automated systems earlier, a fully automated CAD system is just another step forward. A proper combination of a feature selection model and a classifier for those areas of a mammogram marked by radiologists has been very successful. However a fully automated system with only two modules is a time consuming process as the suspicious areas in a mammogram can be quite small when compared to the whole image. Thus an additional clustering process can help in reducing the time complexity of the overall process. In this paper we propose a fast clustering process to identify suspicious areas. Another novelty of this paper is a multi-category feature selection approach. The choice of features to represent the patterns affects several aspects of pattern recognition problems such as accuracy, required learning time and the required number of samples. In this paper we propose a hybrid canonical based feature extraction technique as a combination of an evolutionary algorithm based classifier with a feed forward MLP model.
Cite this article as:
R. Ghosh, M. Ghosh, and J. Yearwood, “A Fully Automated Breast Cancer Recognition System Using Discrete-Gradient Based Clustering and Multi Category Feature Selection,” J. Adv. Comput. Intell. Intell. Inform., Vol.9 No.3, pp. 244-256, 2005.
Data files:

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Oct. 01, 2024