single-jc.php

JACIII Vol.8 No.3 pp. 284-294
doi: 10.20965/jaciii.2004.p0284
(2004)

Paper:

Feature Extraction of Robot Sensor Data Using Factor Analysis for Behavior Learning

Wai-keung Fung, and Yun-hui Liu

Department of Automation and Computer Aided Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong

Received:
June 18, 2003
Accepted:
March 20, 2004
Published:
May 20, 2004
Keywords:
exploratory factor analysis, confirmatory factor analysis, perceptual space reduction, robot behavior learning, feature extraction
Abstract

The paper addresses feature extraction of sensor data for robot behavior learning using factor analysis. Redundancies in sensor types and quantities are common in sensing competence of robots. The redundancies cause the high dimensionality of the perceptual space. It is impractical to incorporate all available sensor information in decision-making and learning of robots due to the huge memory and computational requirements. This paper proposes a new approach to extract important knowledge from sensor data based on the inter-correlation of sensor data using factor analysis and construct logical perceptual space for robot behavior learning. The logical perceptual space is constructed by hypothetical latent factors extracted using factor analysis. Since the latent factors extracted have fewer dimensions than raw sensor data, using the logical perceptual space in behavior learning would significantly simplify the learning process and architecture. Experiments have been conducted to demonstrate the process of logical perceptual space extraction from ultrasonic range data for robot behavior learning.

Cite this article as:
Wai-keung Fung and Yun-hui Liu, “Feature Extraction of Robot Sensor Data Using Factor Analysis for Behavior Learning,” J. Adv. Comput. Intell. Intell. Inform., Vol.8, No.3, pp. 284-294, 2004.
Data files:

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 13, 2021