JACIII Vol.7 No.2 pp. 115-123
doi: 10.20965/jaciii.2003.p0115


Obstacle Avoidance for Quadruped Robots Using a Neural Network

Tomohiro Yamaguchi, Keigo Watanabe, Kiyotaka Izumi, and Kazuo Kiguchi

Department of Advanced Systems Control Engineering, Graduate School of Science and Engineering, Saga University, 1-Honjomachi, Saga 840-8502, Japan

February 3, 2003
February 26, 2003
June 20, 2003
quadruped robot, neural network, genetic algorithm, obstacle avoidance
Legged mobile robots, which differ from wheeled and crawler, need not avoid all obstacles by altering the path in the obstacle avoidance task. Because, legged mobile robots can get over or stride some obstacles, depending on the obstacle configuration and the current state of the robot. Legged mobile robots muse have suitable motion for each leg. We propose body motion control of a quadruped robot using a neural network (NN) for an obstacle avoidance task. Each leg motion is calculated by robot kinematics using body motion from the NN. NN design parameters are tuned off-line by a genetic algorithm (GA). Effectiveness of the present method is proved through an experiment.
Cite this article as:
T. Yamaguchi, K. Watanabe, K. Izumi, and K. Kiguchi, “Obstacle Avoidance for Quadruped Robots Using a Neural Network,” J. Adv. Comput. Intell. Intell. Inform., Vol.7 No.2, pp. 115-123, 2003.
Data files:

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 19, 2024