single-jc.php

JACIII Vol.6 No.2 pp. 79-83
doi: 10.20965/jaciii.2002.p0079
(2002)

Paper:

Contribution to Creation of Complex System Macrosituations

Eva Ocelíková and Ladislav Madarász

Department of Cybernetics and Artificial Intelligence, Technical University of Kosice, Letná 9 04120 Kosice, Slovak Republic

Received:
July 2, 2002
Accepted:
August 2, 2002
Published:
June 20, 2002
Keywords:
situation control, macrosituation, attribute, classification, dimension reduction, principal component
Abstract

This paper deals with the creation of multidimensional data classes – macrosituations – by decreasing their dimension. A large number of monitored attributes in examined situations in complex systems often complicates technical realization of classification and extends the time needed for providing a decision. It is possible to decrease the dimension of situations and, simultaneously, to not decrease decision-making quality. The main subject relates to a possible approach – the Principal Component Method. The basis of this method lies in finding a linear transformation of original p-dimensional space of attributes into a new p’-dimensional space of attributes where p’≤p. New attributes, called principal components, arise in a suitable linear combination of original attributes and are sorted in descending order based on their variance.

Cite this article as:
Eva Ocelíková and Ladislav Madarász, “Contribution to Creation of Complex System Macrosituations,” J. Adv. Comput. Intell. Intell. Inform., Vol.6, No.2, pp. 79-83, 2002.
Data files:

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 08, 2021