Paper:
Views over last 60 days: 407
Evolutionary Nonlinear Multimodel Partitioning Filters
G. N. Befigiannis*,**, E. N. Demiris* and S. D. Likothanassis*,**,***
*Department of Computer Engineering and Informatics University of Patras, Rio, 26500, Patras, Greece
**Computer Technology Institute (C.T.I.) Kolokotroni 3, 26221, Patras, Greece
***University of Patras Artificial Intelligence Research Center (U.P.A.I.R.C.) University of Patras, Rio, 26500 Patras, Greece
Received:October 20, 2000Accepted:December 10, 2000Published:January 20, 2001
Keywords:Nonliner filter, Multimodel Partitioning Theory, Genetic Algorithms
Abstract
The problem of designing adaptive filters for nonlinear systems is faced in this work. The proposed evolution program combines the effectiveness of multimodel adaptive filters and the robustness of genetic algorithms (GAs). Specifically, a bank of different extended Kalman filters is implemented. Then, the a posteriori probability that a specific model of the bank of conditional models is the true one can be used as a GA fitness function. The superiority of the algorithm is that it evolves concurrently the models’ population with initial conditions. Thus, this procedure alleviates extended Kalman filter sensitivity in initial conditions, by estimating the best values. In addition to this, adaptive implementation is proposed that relieves the disadvantage of time-consuming GA implementation. Finally, a variety of defined crossover and mutation operators is investigated in order to accelerate the algorithm’s convergence.
Cite this article as:G. Befigiannis, E. Demiris, and S. Likothanassis, “Evolutionary Nonlinear Multimodel Partitioning Filters,” J. Adv. Comput. Intell. Intell. Inform., Vol.5 No.1, pp. 8-14, 2001.Data files: